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Characterizing the Ordered AG-Groupoids Through
the Properties of Their Different Classes of Ideals

In this article, we have presented some important charcterizations of the ordered non-associative semigroups
in relation to their ideals. We have initially characterized the ordered AG-groupoid through the properties
of the their ideals, then we characterized the two important classes of these AG-groupoids, namely the
regular and intragregular non-associative AG-groupoids. Our aim is also to encourage the research and the
maturity of the associative algebraic structures by studying a class of non-associative and non-commutative
algebraic structures called the ordered AG-groupoid.
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Introduction

In 1972, a generalization of commutative semigroups has been established by Kazim et. al [1]. In
ternary commutative law: abc = cba, they introduced the braces on the left side of this law and explored
a new pseudo associative law, that is (ab)c = (cb)a. They have called the left invertive law of this law.
A groupoid S is said to be a left almost semigroup (abbreviated as LA-semigroup) if it satisfies the left
invertive law : (ab)c = (cb)a. This structure is also known as Abel-Grassmann’s groupoid (abbreviated
as AG-groupoid) in [2]. An AG-groupoid is a midway structure between an abelian semigroup and a
groupoid. Mushtaq et. al [3], investigated the concept of ideals in AG-groupoids.

In [4] (resp. [5]), a groupoid S is said to be medial (resp. paramedial) if (ab)(cd) = (ac)(bd) (resp.
(ab)(cd) = (db)(ca)). In [1], an AG-groupoid is medial, but in general an AG-groupoid needs not to be
paramedial. Every AG-groupoid with left identity is paramedial by Protic et. al [2] and also satisfies
a(bc) = b(ac), (ab)(cd) = (dc)(ba).

In [6, 7], if (S, ·,≤) is an ordered semigroup and ∅ 6= A ⊆ S, we define a subset of S as follows :
(A] = {s ∈ S : s ≤ a for some a ∈ A}. A non-empty subset A of S is called a subsemigroup of S if
A2 ⊆ A.

A non-empty subset A of S is called a left (resp. right) ideal of S if following hold (1) SA ⊆ A
(resp. AS ⊆ A). (2) If a ∈ A and b ∈ S such that b ≤ a implies b ∈ A. Equivalent definition: A is
called a left(resp. right) ideal of S if (A] ⊆ A and SA ⊆ A (resp. AS ⊆ A).

A non-empty subset A of S is called an interior (resp. quasi-) ideal of S if (1) SAS ⊆ A (resp.
(AS] ∩ (SA] ⊆ A). (2) If a ∈ A and b ∈ S such that b ≤ a implies b ∈ A.

A subsemigroup (A non-empty subset) A of S is called a bi- (generalized bi-) ideal of S if (1)
ASA ⊆ A. (2) If a ∈ A and b ∈ S such that b ≤ a implies b ∈ A. Every bi-ideal of S is a generalized
bi-ideal of S.
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In [7, 8], an ordered semigroup is said to be regular if for every a ∈ S,there exists an element
x ∈ S such that a ≤ axa. Equivalent definitions are as follows: (1)A ⊆ (ASA] for every A ⊆ S.
(2) a ∈ (aSa] for every a ∈ S.

In [9,10], an ordered semigroup S is intra-regular if for every a ∈ S there exist elements x, y ∈ S such
that a ≤ xa2y. Equivalent definitions are as follows: (1)A ⊆ (SA2S] for every A ⊆ S. (2) a ∈ (Sa2S] for
every a ∈ S.

We will define left (right, interior, quasi-, bi-, generalized bi-) ideals in ordered AG-groupoids. We
will establish a study by discussing the different properties of such ideals. We will also characterize
regular (resp. intra-regular, both regular and intra-regular) ordered AG-groupoids by the properties of
left (right, quasi-, bi-, generalized bi-) ideals.

Ideals in Ordered AG-groupoids

An ordered AG-groupoid S, is a partially ordered set, at the same time an AG-groupoid such that
a ≤ b, implies ac ≤ bc and ca ≤ cb for all a, b, c ∈ S. Two conditions are equivalent to the one condition
(ca)d ≤ (cb)d for all a, b, c, d ∈ S.

Example 1. Consider a set S = {e, f, a, b, c} with the following multiplication “·” and order relation
“≤”

· e f a b c

e e f a b c
f f f f b c
a a f c b c
b c c c f b
c b b b c f

≤= {(e, e), (e, a), (e, b), (e, c), (f, f), (f, b), (f, c), (a, a), (a, c), (b, b), (b, c), (c, c)}.
Then (S, ·,≤) is an ordered AG-groupoid with left identity e.

For ∅ 6= A ⊆ S, we define a subset (A] = {s ∈ S : s ≤ a for some a ∈ A} of S and obviously
A ⊆ (A]. For ∅ 6= A,B ⊆ S, then ((A]] = (A], (A](B] ⊆ (AB], ((A](B]] = (AB], if A ⊆ B, then
(A] ⊆ (B], (A ∩B] 6= (A] ∩ (B], in general.

For ∅ 6= A ⊆ S. Then A is called an ordered AG-subgroupoid of S if A2 ⊆ A. A is called a left
(resp. right) ideal of S if the following hold (1) SA ⊆ A (resp. AS ⊆ A). (2) If a ∈ A and b ∈ S such
that b ≤ a implies b ∈ A. A is called an ideal of S if A is both a left and a right ideal of S.

We denote by L(a), R(a), I(a) the left ideal, the right ideal and the ideal of S, respectively, generated
by a. we have L(a) = {s ∈ S : s ≤ a or s ≤ xa for some x ∈ S} = (a ∪ Sa], R(a) = (a ∪ aS],
I(a) = (a ∪ Sa ∪ aS ∪ (Sa)S].

A non-empty subset A of an ordered AG-groupoid S is called an interior (resp. quasi-) ideal of S
if (1) (SA)S ⊆ A (resp. (AS] ∩ (SA] ⊆ A). (2) If a ∈ A and b ∈ S such that b ≤ a implies b ∈ A.

An AG-subgroupoid A of S is called a bi-ideal of S if (1) (AS)A ⊆ A. (2) If a ∈ A and b ∈ S
such that b ≤ a implies b ∈ A. A non-empty subset A of S is called generalized bi-ideal of S if (1)
(AS)A ⊆ A. (2) If a ∈ A and b ∈ S such that b ≤ a implies b ∈ A.

Now we give the imperative properties of such ideals of an ordered AG-groupoid S, which will be
play a vital rule in the later sections. Specifically we show:

(1) Let S be an ordered AG-groupoid with left identity e. Then every right ideal of S is a ideal of
S.

(2) Let S be an ordered AG-groupoid with left identity e, such that (xe)S = xS for all x ∈ S. Then
every quasi-ideal of S is a bi-ideal of S.

Lemma 1. Let S be an ordered AG-groupoid with left identity e. Then SS = S and eS = S = Se.

Proof: Since SS ⊆ S and x = ex ∈ SS, i.e., S ⊆ SS, thus SS = S. Obviously, eS = S and
Se = (SS) e = (eS)S = SS = S.
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Lemma 2. Let S be an odered AG-groupoid with left identity e and a ∈ S. Then Sa is a smallest
left ideal of S containing a.

Proof: Let x ∈ Sa and s ∈ S, this implies that x = s1a, where s1 ∈ S. Now

sx = s(s1a) = (es)(s1a) = ((s1a)s)e = ((s1a)(es))e

= ((s1e)(as))e = (e(as))(s1e) = (as)(s1e) = ((s1e)s)a ∈ Sa.

Thus sx ∈ Sa and (Sa] ⊆ Sa. Since a = ea ∈ Sa, hence Sa is a left ideal of S containing a. Let I
be another left ideal of S containing a. Since sa ∈ I, because I is a left ideal of S. But sa ∈ Sa, this
means that Sa ⊆ I. Therefore Sa is a smallest left ideal of S containing a.

Lemma 3. Let S be an odered AG-groupoid with left identity e and a ∈ S. Then aS is a left ideal
of S.

Proof: Straight forward.
Proposition 1. Let S be an ordered AG-groupoid with left identity e and a ∈ S. Then aS ∪ Sa is a

smallest right ideal of S containing a.

Proof: Let x ∈ aS ∪ Sa. We have to show that (aS ∪ Sa)S ⊆ aS ∪ Sa. Now

(aS ∪ Sa)S = (aS)S ∪ (Sa)S = (SS)a ∪ (Sa)(eS)

⊆ Sa ∪ (Se)(aS) = Sa ∪ S(aS)

= Sa ∪ a(SS) ⊆ Sa ∪ aS = aS ∪ Sa.

Thus (aS ∪ Sa)S ⊆ aS ∪ Sa and (aS ∪ Sa] ⊆ aS ∪ Sa. Therefore aS ∪ Sa is a right ideal of S. Since
a ∈ Sa, i.e., a ∈ aS ∪ Sa. Let I be another right ideal of S containing a. Now aS ∈ IS ⊆ I and
Sa = (SS)a = (aS)S ∈ (IS)S ⊆ IS ⊆ I, i.e., aS ∪ Sa ⊆ I. Hence aS ∪ Sa is a smallest right ideal of
S containing a.

Lemma 4. Let S be an ordered AG-groupoid with left identity e. Then every right ideal of S is an
ideal of S.

Proof: Let R be a right ideal of S and r ∈ R, s ∈ S. Now sr = (es)r = (rs)e ∈ (RS)S ⊆ RS ⊆ R.
Thus SR ⊆ R and (R] ⊆ R. Hence R is an ideal of S.

Lemma 5. Let S be an ordered AG-groupoid with left identity e such that (xe)S = xS for all
x ∈ S. Then (AS)S ⊆ AS and (AS]S ⊆ (AS].

Proof: Since

(AS)S = (AS)(eS) = (Ae)(SS) ⊆ (Ae)S = AS.

and (AS]S = (AS](S] ⊆ ((AS)S] ⊆ (AS].

Remark 1. Let S be an ordered AG-groupoid with left identity e such that (xe)S = xS for all
x ∈ S, then (AS] is an ideal of S.

Let S be an ordered AG-groupoid with left identity e such that (xe)S = xS for all x ∈ S and
A,B ⊆ S. Then (AS)(BS) ⊆ (AB)S and (AS](BS] ⊆ ((AB)S]. Similarly (SA)(SB) ⊆ S(AB) and
(SA](SB] ⊆ (S(AB)].

In general for A1, A2, ..., An ⊆ S, then (A1S)(A2S)...(AnS) ⊆ (A1A2, ..., An)S and (A1S](A2S]...
(AnS] ⊆ ((A1A2, ..., An)S].

Similarly, (SA1)(SA2)...(SAn) ⊆ S(A1A2, ..., An) and (SA1](SA2]....(SAn] ⊆ (S(A1A2, ..., An)].

Lemma 6. Let S be an ordered AG-groupoid. A is a right ideal of S and B is a right ideal of A,
then (B] = B.

Proof: Since (B] = {s ∈ S | s ≤ b for some b ∈ B} and s ∈ (B], this implies that there exists an
element s ∈ S such that s ≤ b for some b ∈ B ⊆ A. Thus S 3 s ≤ b ∈ A. Now A 3 s ≤ b ∈ B and B is
a right ideal of A, i.e., s ∈ B, so (B] ⊆ B. Since B ⊆ (B], thus (B] = B.
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Proposition 2. Let S be an ordered AG-groupoid with left identity e such that (xe)S = xS for all
x ∈ S. A is a right ideal of S and B is a right ideal of A such that (B2] = B. Then B is an ideal of S.

Proof: We have to show that B is a right ideal of S. Now

BS = (B2]S = (B2](S] ⊆ (B2S] = ((BB)S]

= ((SB)B] ⊆ ((SB)A] = ((SB)(eA)]

= ((Se)(BA)] = (B((Se)A)] = (B((Ae)S)]

= (B(AS)] ⊆ (BA] ⊆ (B] = B by the Lemma 6.

Thus BS ⊆ B and (B] ⊆ B, i.e., B is a right ideal of S. Hence B is an ideal of S by the Lemma 4.
Lemma 7. Let S be an ordered AG-groupoid. A is a left ideal of S and B is a left ideal of A, then

(B] = B.
Proof: Same as Lemma 6.
Proposition 3. Let S be an ordered AG-groupoid with left identity e. A is a left ideal of S and B

is a left ideal of A such that (B2] = B. Then B is left ideal of S.
Proof: We have to show that B is a left ideal of S. Now

SB = S(B2] = (S](B2] ⊆ (SB2] = (S(BB)]

= ((Se)(BB)] = ((SB)(eB)]

⊆ ((SA)(eB)] ⊆ (AB] ⊆ (B] = B, by the Lemma 7.

Thus SB ⊆ B and (B] ⊆ B. Hence B is a left ideal of S.
Lemma 8. Every two-sided ideal of S is an interior ideal of S.
Proof: Straight forward.
Proposition 4. Let S be an ordered AG-groupoid with left identity e. Then any non-empty subset

I of S is an ideal of S if and only if I is an interior ideal of S.
Proof: Suppose that I is an interior ideal of S. Let i ∈ I and s ∈ S. Now is = (ei)s ∈ (SI)S ⊆ I,

this implies that IS ⊆ I and (I] ⊆ I, i.e., I is a right ideal of S. Hence I is an ideal of S by the Lemma
4. Converse is true by the Lemma 8.

Lemma 9. Every right (two-sided) ideal of S is a bi-ideal of S.
Proof: Straight forward.
Lemma 10. Every bi-ideal of S is a generalized bi-ideal of S.
Proof: Obvious.
Lemma 11. Every left (right, two-sided) ideal of S is a quasi-ideal of S.
Proof: Let I be a right ideal of S. Now (IS] ∩ (SI] ⊆ (IS] ⊆ (I] ⊆ I and (I] ⊆ I. Thus I is a

quasi-ideal of S.
Proposition 5. Every quasi-ideal of S is an ordered AG-subgroupoid of S.
Proof: Suppose that I is a quasi-ideal of S. Now II ⊆ IS ⊆ (I](S] ⊆ (IS] and II ⊆ SI ⊆ (S](I] ⊆

⊆ (SI], i.e., I2 = II ⊆ (IS] ∩ (SI] ⊆ I. Hence I is an AG-subgroupoid of S.
Proposition 6. Let R be a right ideal and L be a left ideal of an ordered AG-groupoid S, respectively.

Then R ∩ L is a quasi-ideal of S.
Proof: Since ((R ∩ L)S] ∩ (S(R ∩ L)] ⊆ (RS] ∩ (SL] ⊆ (R] ∩ (L] ⊆ R ∩ L and (R ∩ L] = R ∩ L.

Thus R ∩ L is a quasi-ideal of S.
Lemma 12. Let S be an ordered AG-groupoid with left identity e such that (xe)S = xS for all

x ∈ S. Then every quasi-ideal of S is a bi-ideal of S.
Proof: Let Q be a quasi-ideal of S. Now (QS)Q ⊆ (SS)Q ⊆ SQ ⊆ (SQ] and (QS)Q ⊆ (QS)S =

= (QS)(eS) = (Qe)(SS) = (Qe)S = QS ⊆ (QS], thus (QS)Q ⊆ (QS] ∩ (SQ] ⊆ Q. Therefore
(QS)Q ⊆ Q and (Q] ⊆ Q. Hence Q is a bi-ideal of S.
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Regular Ordered AG-groupoids

An ordered AG-groupoid S is called regular if for every a ∈ S, there exists an element x ∈ S such
that a ≤ (ax)a. Equivalent definitions are as follows:

(1) A ⊆ ((AS)A] for every A ⊆ S.

(2) a ∈ ((aS)a] for every a ∈ S.

An ideal I of an ordered AG-groupoid S is called idempotent if (I2] = I.

In this section, we characterize regular ordered AG-groupoids by the properties of (left, right, quasi-,
bi-, generalized bi-) ideals.

Lemma 13. Every right ideal of a regular ordered AG-groupoid S

Proof: Let R be a right ideal of S. Let r ∈ R and a ∈ S, this implies that there exists an element
x ∈ S such that a ≤ (ax)a. Now ar ≤ ((ax)a)r = (ra)(ax) ∈ RS ⊆ R, thus SR ⊆ R and (R] = R.
Hence R is an ideal of S.

Lemma 14. Every ideal of a regular ordered AG-groupoid S is an idempotent.
Proof: Suppose that I is an ideal of S and (I2] = (II] ⊆ (I] = I. Let a ∈ I, this mean that there

exists an element x ∈ S such that a ≤ (ax)a. Now a ≤ (ax)a ∈ (IS)I ⊆ II = I2, i.e., I ⊆ (I2].
Therefore (I2] = I.

Remark 2. Every right ideal of a regular ordered AG-groupoid S is an idempotent.
Proposition 7. Let S be a regular ordered AG-groupoid. Then any non-empty subset I of S is an

ideal of S if and only if I is an interior ideal of S.
Proof: Assume that I is an interior ideal of S. Let a ∈ I and s ∈ S, then there exists an element

x ∈ S, such that a ≤ (ax)a. Now as ≤ ((ax)a)s = (sa)(ax) ∈ (SI)S ⊆ I. Thus IS ⊆ I and (I] = I,
i.e., I is a right ideal of S. Hence I is an ideal of S by the Lemma 4. Converse is true by the Lemma
13.

Proposition 8. Let S be a regular ordered AG-groupoid with left identity e. Then (IS] ∩ (SI] = I,
for every right ideal I of S.

Proof: Let I be an ideal of S. This implies that (IS] ∩ (SI] ⊆ I, because every ideal of S is a
quasi-ideal of S. Let a ∈ I, this means that there exists an element x ∈ S such that a ≤ (ax)a. Now
a ≤ (ax)a ∈ (IS)I ⊆ II ⊆ IS, i.e., I ⊆ (IS]. Now a ≤ (ax)a = (ax)(ea) = (ae)(xa) ∈ II ⊆ SI, i.e.,
I ⊆ (SI]. Thus I ⊆ (IS] ∩ (SI]. Hence (IS] ∩ (SI] = I.

Lemma 15. Let S be a regular ordered AG-groupoid. Then (RL] = R ∩ L, for every right ideal R
and every left ideal L of S.

Proof: Since (RL] ⊆ (RS] ⊆ (R] = R and (RL] ⊆ (SL] ⊆ (L] = L, i.e., (RL] ⊆ R∩L. Let a ∈ R∩L,
this implies that there exists an element x ∈ S such that a ≤ (ax)a. Now a ≤ (ax)a ∈ (RS)L ⊆ RL,
i.e., R ∩ L ⊆ (RL]. Therefore (RL] = R ∩ L.

Theorem 1. Let S be an ordered AG-groupoid with left identity e such that (xe)S = xS for all
x ∈ S. Then the following conditions are equivalent.

(1) S is a regular.
(2) R ∩ L = (RL] for every right ideal R and every left ideal L of S.
(3) Q = ((QS)Q] for every quasi-ideal Q of S.
Proof: Suppose that (1) holds. Let Q be a quasi-ideal of S and a ∈ Q, this implies that there exists

an element x ∈ S such that a ≤ (ax)a. Now a ≤ (ax)a ∈ (QS)Q, i.e., Q ⊆ ((QS)Q] ⊆ (Q] = Q,
because every quasi-ideal of S is a bi-ideal of S. Hence Q = ((QS)Q], i.e., (1) ⇒ (3) . Assume that
(3) holds, let R be a right ideal and L be a left ideal of S. Then R and L be quasi-ideals of S by the
Lemma 11, so R ∩ L be a quasi-ideal of S. Now R ∩ L = (((R ∩ L)S)(R ∩ L)] ⊆ ((RS)L] ⊆ (RL].
Since (RL] ⊆ R ∩ L, so (RL] = R ∩ L, i.e., (3) ⇒ (2) . Suppose that (2) is true, let a ∈ S, then Sa is
a left ideal of S containing a by the Lemma 2 and aS ∪ Sa is a right ideal of S containing a by the
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Proposition 1. By (2) ,

(aS ∪ Sa) ∩ Sa = ((aS ∪ Sa)(Sa)] = ((aS)(Sa) ∪ (Sa)(Sa)].

(Sa)(Sa) = ((Se)a)(Sa) = ((ae)S)(Sa) = (aS)(Sa).

Thus

(aS ∪ Sa) ∩ Sa = ((aS)(Sa) ∪ (Sa)(Sa)]

= ((aS)(Sa) ∪ (aS)(Sa)] = ((aS)(Sa)].

Since a ∈ (aS ∪ Sa) ∩ Sa, Implies a ∈ ((aS)(Sa)]. Then a ≤ (ax)(ya) = ((ya)x)a = (((ey)a)x)a =
= (((ay)e)x)a = ((xe)(ay))a = (a((xe)y))a ∈ (aS)a for any x, y ∈ S, i.e., a ∈ ((aS)a]. Hence a is
regular, so S is a regular, i.e., (2)⇒ (1) .

Theorem 2. Let S be an ordered AG-groupoid with left identity e such that (xe)S = xS for all
x ∈ S. Then the following conditions are equivalent.

(1) S is a regular.
(2) Q = ((QS)Q] for every quasi-ideal Q of S.
(3) B = ((BS)B] for every bi-ideal B of S.
(4) G = ((GS)G] for every generalized bi-ideal G of S.
Proof: (1) ⇒ (4) , is obvious. (4) ⇒ (3) , since every bi-ideal of S is a generalized bi-ideal of S by

the Lemma 10. (3) ⇒ (2) , since every quasi-ideal of S is bi-ideal of S by the Lemma 12. (2) ⇒ (1) ,
by the Theorem 1.

Theorem 3. Let S be an ordered AG-groupoid with left identity e such that (xe)S = xS for all
x ∈ S. Then the following conditions are equivalent.

(1) S is a regular.
(2) Q ∩ I = ((QI)Q] for every quasi-ideal Q and every ideal I of S.
(3) B ∩ I = ((BI)B] for every bi-ideal B and every ideal I of S.
(4) G ∩ I = ((GI)G] for every generalized bi-ideal G and every ideal I of S.
Proof: Suppose that (1) is true. Let G be a generalized bi-ideal and I be an ideal of S. Now

((GI)G] ⊆ ((SI)S] ⊆ (I] = I and ((GI)G] ⊆ ((GS)G] ⊆ (G] = G, thus ((GI)G] ⊆ G ∩ I. Let
a ∈ G ∩ I, this means that there exists an element x ∈ S such that a ≤ (ax)a. Now a ≤ (ax)a =
= (((ax)a)x)a = ((xa)(ax))a = (a((xa)x))a ∈ (GI)G, thus G ∩ I ⊆ ((GI)G]. Hence G ∩ I = ((GI)G],
i.e., (1) ⇒ (4) . (4) ⇒ (3) , since every bi-ideal of S is a generalized bi-ideal of S by the Lemma 10.
(3) ⇒ (2) , since every quasi-ideal of S is a bi-ideal of S by the Lemma 12. Assume that (2) is true.
Now Q ∩ S = ((QS)Q], i.e., Q = ((QS)Q], where Q is a quasi-ideal of S. Hence S is a regular by the
Theorem 1.

Theorem 4. Let S be an ordered AG-groupoid with left identity e such that (xe)S = xS for all
x ∈ S. Then the following conditions are equivalent.

(1) S is a regular.
(2) R ∩Q ⊆ (RQ] for every quasi-ideal Q and every right ideal R of S.
(3) R ∩B ⊆ (RB] for every bi-ideal B and every right ideal R of S.
(4) R ∩G ⊆ (RG] for every generalized bi-ideal G and every right ideal R of S.
Proof: (1) ⇒ (4) , is obvious. (4) ⇒ (3) , since every bi-ideal of S is a generalized bi-ideal of S.

(3)⇒ (2) , since every quasi-ideal of S is a bi-ideal of S by the Lemma 12. . Suppose that (2) is true.
Now R ∩ Q = Q ∩ R ⊆ (RQ], where Q is a left ideal and R is right ideal of S, because every left
ideal of S is a quasi-ideal of S. Since (RQ] ⊆ R ∩Q, thus R ∩Q = (RQ]. Hence S is a regular, by the
Theorem 1.
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Intra-regular Ordered AG-groupoids

An ordered AG-groupoid S is called intra-regular if for every a ∈ S, there exist elements x, y ∈ S
such that a ≤ (xa2)y. Equivalent definitions are as follows:

(1) A ⊆ ((SA2)S] for every A ⊆ S.
(2) a ∈ ((Sa2)S] for every a ∈ S.
In this section, we characterize intra-regular ordered AG-groupoids by the properties of (left, right,

quasi-, bi-, generalized bi-) ideals.
Lemma 16. Every left (right) ideal of an intra-regular ordered AG-groupoid S is an ideal of S.
Proof: Let R be a right ideal of S. Let r ∈ R and a ∈ S, this implies that there exist elements

x, y ∈ S such that a ≤ (xa2)y. Now ar ≤ ((xa2)y)r = (ry)(xa2) ∈ RS ⊆ R. Thus SR ⊆ R and
(R] ⊆ R. Hence R is an ideal of S.

Lemma 17. Every ideal of an intra-regular ordered AG-groupoid S with left identity e, is an
idempotent.

Proof: Suppose that I is an ideal of S and (I2] = (II] ⊆ (I] = I. Let a ∈ I, this means that there
exist elements x, y ∈ S such that a ≤ (xa2)y. Now

a ≤ (xa2)y = (x(aa))y = (a(xa))y

= (a(xa))(ey) = (ae)((xa)y) = (xa)((ae)y) ∈ II.

Thus a ∈ (II] = (I2]. Therefore (I2] = I.
Proposition 9. Let S be an intra-regular ordered AG-groupoid with left identity e. Then any non-

empty subset I of S is an ideal of S if and only if I is an interior ideal of S.
Proof: Assume that I is an interior ideal of S. Let i ∈ I and a ∈ S, then there exist elements

x, y ∈ S such that x ≤ (yx2)z. Now

ia ≤ i((xa2)y) = i((x(aa))y)

= i((a(xa))y) = i((a(xa))(ey))

= i((ae)((xa)y)) = i((xa)((ae)y))

= (xa)(i((ae)y)) = (xi)(a((ae)y)) ∈ (SI)S ⊆ I.

Thus IS ⊆ I and (I] ⊆ I, i.e., I is a right ideal of S. So I is an ideal of S by the Lemma 16.
Converse is obvious.

Lemma 18. Let S be an intra-regular ordered AG-groupoid with left identity e. Then L∩R ⊆ (LR]
for every left ideal L and every right ideal R of S.

Proof: Let a ∈ L ∩ R, where L is a left ideal and R is a right ideal of S, respectively, this implies
that there exist elements x, y ∈ S such that a ≤ (xa2)y. Now

a ≤ (xa2)y = (x(aa))y = (a(xa))y = (a(xa))(ey)

= (ae)((xa)y) = (xa)((ae)y) ∈ LR.

⇒ L ∩R ⊆ (LR].

Theorem 5. Let S be an ordered AG-groupoid with left identity e such that (xe)S = xS for all
x ∈ S. Then the following conditions are equivalent.

(1) S is an intra-regular.
(2) L ∩R ⊆ (LR] for every left ideal L and every right ideal R of S.
Proof: Since (1)⇒ (2) holds by the Lemma 18. Suppose that (2) holds and a ∈ S, then Sa is a left

ideal of S containing a and aS ∪ Sa is a right ideal of S containing a. By our supposition

Sa ∩ (aS ∪ Sa) ⊆ ((Sa)(aS ∪ Sa)] = ((Sa)(aS) ∪ (Sa)(Sa)].

(Sa)(aS) = (Sa)((ea)S) = (Sa)((Sa)e) = (Sa)((Sa)(ee))

= (Sa)((Se)(ae)) = (Sa)(S(ae)) = (Sa)(Sa).
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Thus

(aS ∪ Sa) ∩ Sa ⊆ ((Sa)(aS) ∪ (Sa)(Sa)]

= ((Sa)(Sa) ∪ (Sa)(Sa)]

= ((Sa)(Sa)] = (S2a2] = (Sa2]

= (S(a2e)] = ((SS)(a2e)] = ((eS)(a2S)] = (S(a2S)]

= (a2(SS)] = ((ea2)(SS)] = ((Sa2)(Se)] = ((Sa2)S].

Since a ∈ (aS∪Sa)∩Sa, implies a ∈ ((Sa2)S], thus a is an intra regula. Hence S is an intra-regular,
i.e., (2)⇒ (1) .

Theorem 6. Let S be an ordered AG-groupoid with left identity e such that (xe)S = xS for all
x ∈ S. Then the following conditions are equivalent.

(1) S is an intra-regular.
(2) Q ∩ I = ((QI)Q] for every quasi-ideal Q and every ideal I of S.
(3) B ∩ I = ((BI)B] for every bi-ideal B and every ideal I of S.
(4) G ∩ I = ((GI)G] for every generalized bi-ideal G and every ideal I of S.
Proof: Suppose that (1) holds. Let a ∈ G∩ I, where G is a generalized bi-ideal and I is an ideal of

S, this implies that there exist elements x, y ∈ S such that a ≤ (xa2)y. Now

a ≤ (xa2)y = (x(aa))y = (a(xa))y = (y(xa))a.

y(xa) ≤ y(x((xa2)y)) = y((xa2)(xy)) = (xa2)(y(xy))

= (xa2)(xy2) = (x(aa))m, say xy2 = m

= (a(xa))m = (m(xa))a.

m(xa) ≤ m(x((xa2)y)) = m((xa2)(xy)) = (xa2)(m(xy))

= (x(aa))n, say m(xy) = n

= (a(xa))n = (n(xa))a

= va, say n(xa) = v.

⇒ y(xa) = (m(xa))a = (va)a = (va)(ea) = (ve)(aa) = a((ve)a).

Thus a ≤ (xa2)y = (y(xa))a = (a((ve)a))a ∈ (GI)G. This means that a ∈ ((GI)G], i.e.,
G ∩ I ⊆ ((GI)G]. Now ((GI)G] ⊆ ((SI)S] ⊆ (I] = I and ((GI)G] ⊆ ((GS)G] ⊆ (G] = G, thus
((GI)G] ⊆ G ∩ I. Hence G ∩ I = ((GI)G], i.e., (1) ⇒ (4) . (4) ⇒ (3) , every bi-ideal of S is a
generalized bi-ideal of S by the Lemma 10. (3)⇒ (2) , every quasi-ideal of S is a bi-ideal of S by the
Lemma 12. Assume that (2) is true and let R be a right ideal and I be a two-sided ideal of S. Now
I ∩R = ((RI)R] ⊆ ((SI)R] ⊆ (IR], since every right ideal of S is a quasi-ideal of S. Therefore S is an
intra-regular by the Theorem 5, i.e., (2)⇒ (1) .

Theorem 7. Let S be an ordered AG-groupoid with left identity e such that (xe)S = xS for all
x ∈ S. Then the following conditions are equivalent.

(1) S is an intra-regular.
(2) L ∩Q ⊆ (LQ] for every quasi-ideal Q and every left ideal L of S.
(3) L ∩B ⊆ (LB] for every bi-ideal B and every left ideal L of S.
(4) L ∩G ⊆ (LG] for every generalized bi-ideal G and every left ideal L of S.
Proof: Suppose that (1) holds. Let a ∈ L∩G, where L is a left ideal and G is a generalized bi-ideal

of S, this means that there exist elements x, y ∈ S such that a ≤ (xa2)y. Now a ≤ (xa2)y = (x(aa))y =
= (a(xa))y = (y(xa))a ∈ LG, i.e., a ∈ (LG]. Thus L ∩ G ⊆ (LG], i.e., (1) ⇒ (4) . (4) ⇒ (3) , every
bi-ideal of S is a generalized bi-ideal of S. (3)⇒ (2) , every quasi-ideal of S is a bi-ideal of S. Assume
that (2) is true and let R be a right ideal of S and L be a left ideal of S. Now L∩R ⊆ (LR], where R
is a quasi-ideal of S. Hence S is an intra-regular by the Theorem 5, i.e., (2)⇒ (1) .
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Theorem 8. Let S be an ordered AG-groupoid with left identity e such that (xe)S = xS for all
x ∈ S. Then the following conditions are equivalent.

(1) S is an intra-regular.
(2) L ∩Q ∩R ⊆ ((LQ)R] for every quasi-ideal Q, every right ideal R and every left ideal L of S.
(3) L ∩B ∩R ⊆ ((LB)R] for every bi-ideal B, every right ideal R and every left ideal L of S.
(4) L ∩G ∩R ⊆ ((LG)R] for every generalized bi-ideal G, every right ideal R and every left ideal

L of S.
Proof: Suppose that (1) holds. Let a ∈ L∩G∩R, where L is a left ideal, G is a generalized bi-ideal

and R is a right ideal of S, this implies that there exist elements x, y ∈ S such that a ≤ (xa2)y. Now

a ≤ (xa2)y = (x(aa))y = (a(xa))y = (y(xa))a.

y(xa) ≤ y(x((xa2)y)) = y((xa2)(xy)) = (xa2)(y(xy))

= (xa2)(xy2) = (x(aa))m, say xy2 = m

= (a(xa))m = (m(xa))a.

Thus a ≤ (xa2)y = (y(xa))a = ((m(xa))a)a ∈ (LG)R, i.e., a ∈ ((LG)R]. Hence L ∩ G ∩ R ⊆
⊆ ((LG)R], i.e., (1) ⇒ (4) . (4) ⇒ (3) , every bi-ideal of S is a generalized bi-ideal of S. (3) ⇒ (2) ,
every quasi-ideal of S is a bi-ideal of S. Assume that (2) is true. Now

L ∩ S ∩R ⊆ ((LS)R] = (((eL)S)R] = (((SL)e)R] = (((SL)(ee))R]

= (((Se)(Le))R] ⊆ ((S(Le))R] ⊆ ((SL)R] ⊆ (LR].

⇒ L ∩R ⊆ (LR].

Hence S is an intra-regular by the Theorem 5, i.e., (2)⇒ (1) .

Regular and Intra-regular Ordered AG-groupoids

In this section, we characterize both regular and intra-regular ordered AG-groupoids by the properties
of (left, right, quasi-, bi-, generalized bi-) ideals.

Theorem 9. Let S be an ordered AG-groupoid with left identity e such that (xe)S = xS for all
x ∈ S. Then the following conditions are equivalent.

(1) S is a regular and an intra-regular.
(2) (B2] = B for every bi-ideal B of S.
(3) B1 ∩B2 = (B1B2] ∩ (B2B1] for all bi-ideals B1, B2 of S.
Proof: Suppose that (1) holds and B be a bi-ideal of S. Since (B2] = (BB] ⊆ (B] = B. Let a ∈ B,

this implies that there exists an element x ∈ S such that a ≤ (ax)a, also there exist elements y, z ∈ S
such that a ≤ (ya2)z. Now

a ≤ (ax)a ≤ (ax)((ya2)z) = (((ya2)z)x)a.

((ya2)z)x = (xz)(ya2) = m(ya2), say m = xz

= m(y(aa)) = m(a(ya)) = a(m(ya))

≤ ((ax)a)(m(ya)) = ((ax)m)(a(ya))

= ((mx)a)(a(ya)) = (na)(a(ya)), say n = mx

= ((en)a)(a(ya)) = ((an)e)(a(ya))

= ((an)a)(e(ya)) = ((an)a)(ya) = (sa)(ya), say s = an

= (aa)(ys) = (aa)t, say t = ys

≤ (((ax)a)a)t = ((aa)(ax))t = (t(ax))(aa)

= (a(tx))(aa) = (aw)(aa), say w = tx.
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Thus a ≤ (((ya2)z)x)a ≤ ((aw)(aa))a ∈ ((BS)B)B ⊆ B2, i.e., a ∈ (B2]. So B ⊆ (B2], i.e.,
(B2] = B. Hence (1)⇒ (3) . Assume that (2) is true. Let B1, B2 be bi-ideals of S, then B1∩B2 be also
a bi-ideal of S. Now B1 ∩B2 = ((B1 ∩B2)(B1 ∩B2)] ⊆ (B1B2] and B1 ∩B2 = ((B1 ∩B2)(B1 ∩B2)] ⊆
⊆ (B2B1], thus B1 ∩B2 ⊆ (B1B2]∩ (B2B1]. First of all we have to show that (B1B2] is a bi-ideal of S.
It is enough to show that ((B1B2]S)(B1B2] ⊆ (B1B2]. Now

((B1B2]S)(B1B2] = ((B1B2](S])(B1B2]

⊆ ((B1B2)S](B1B2]

⊆ (((B1B2)S)(B1B2)]

= (((B1B2)(SS))(B1B2)]

= (((B1S)(B2S))(B1B2)]

= (((B1S)B1)((B2S)B2)] ⊆ (B1B2]

⇒ (((B1B2)S)(B1B2))] ⊆ (B1B2].

Thus (B1B2] is a bi-ideal of S, similarly (B2B1] is also a bi-ideal of S. Then (B1B2] ∩ (B2B1] is
also a bi-ideal of S. Now

(B1B2] ∩ (B2B1] = (((B1B2] ∩ (B2B1])((B1B2] ∩ (B2B1])]

⊆ ((B1B2](B2B1]] ⊆ (((B1B2)(B2B1)]]

= ((B1B2)(B2B1)] ⊆ ((B1S)(SB1)]

= (((SB1)S)B1] = ((((Se)B1)S)B1]

= ((((B1e)S)S)B1] = (((B1S)S)B1]

= (((SS)B1)B1] = ((SB1)B1] = (((Se)B1)B1]

= (((B1e)S)B1] = ((B1S)B1] ⊆ (B1]

⇒ (B1B2] ∩ (B2B1] ⊆ (B1] = B1.

Similarly, we have (B1B2] ∩ (B2B1] ⊆ (B2] = B2, thus (B1B2] ∩ (B2B1] ⊆ B1 ∩ B2. Therefore
B1 ∩ B2 = (B1B2] ∩ (B2B1], i.e., (2) ⇒ (3) . Suppose that (3) holds, let R be right ideal of S and I
be an ideal of S. Then R and I be bi-ideals of S, because every right ideal and two sided ideal of S is
bi-ideal of S by the Lemma 9. Now R ∩ I = (RI] ∩ (IR], this implies that R ∩ I ⊆ (RI] ∩ (IR]. Thus
R∩ I ⊆ (RI] and R∩ I ⊆ (IR], where I is also a left ideal of S. Since (RI] ⊆ R∩ I, i.e., (RI] = R∩ I,
thus S is a regular by the Theorem 1. Also, R ∩ I ⊆ (IR], thus S is an intra-regular by the Theorem
5. Hence (3)⇒ (1) .

Theorem 10. Let S be an ordered AG-groupoid with left identity e such that (xe)S = xS for all
x ∈ S. Then the following conditions are equivalent.

(1) S is regular and intra-regular.
(2) Every quasi-ideal of S is an idempotent.
Proof: Suppose that (1) holds. Let Q be a quasi-ideal of S and (Q2] = (QQ] ⊆ (Q] = Q, i.e.,

(Q2] ⊆ Q. Let a ∈ Q, this implies that there exists an element x ∈ S such that a ≤ (ax)a, also there
exist elements y, z ∈ S such that a ≤ (ya2)z. Now
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a ≤ (ax)a ≤ (ax)((ya2)z) = (((ya2)z)x)a.

((ya2)z)x = (xz)(ya2) = m(ya2), say m = xz

= m(y(aa)) = m(a(ya)) = a(m(ya))

≤ ((ax)a)(m(ya)) = ((ax)m)(a(ya))

= ((mx)a)(a(ya)) = (qa)(a(ya)), say q = mx

= ((eq)a)(a(ya)) = ((aq)e)(a(ya))

= ((aq)a)(e(ya)) = ((aq)a)(ya) = (sa)(ya), say s = aq

= (aa)(ys) = (aa)t, say t = ys

≤ (((ax)a)a)t = ((aa)(ax))t = (t(ax))(aa)

= (a(tx))(aa) = (aw)(aa), say w = tx

Thus a ≤ (((ya2)z)x)a ≤ ((aw)(aa))a ∈ ((QS)Q)Q ⊆ QQ ⊆ Q2, i.e., a ∈ (Q2], because every
quasi-ideal of S is a bi-ideal of S by the Lemma 12. Thus Q ⊆ (Q2], i.e., (Q2] = Q. Hence (1)⇒ (2) .
Assume that (2) is true. Let a ∈ S, then Sa is a left ideal of S containing a, so Sa is a quasi-ideal of S,
because every left ideal of S is a quasi-ideal of S. Now Sa = ((Sa)2] = ((Sa)(Sa)], i.e., a ∈ ((Sa)(Sa)].
Thus S is an intra-regular by the Theorem 5. Now Sa = ((Sa)(Sa)] = (((Se)a)(Sa)] = (((ae)S)(Sa)] =
= ((aS)(Sa)], i.e., a ∈ ((aS)(Sa)]. Thus S is a regular by the Theorem 1. Therefore (2)⇒ (1).

Theorem 11. Let S be an ordered AG-groupoid with left identity e such that (xe)S = xS for all
x ∈ S. Then the following conditions are equivalent.

(1) S is regular and intra-regular.
(2) Every quasi-ideal of S is an idempotent.
(3) Every bi-ideal of S is an idempotent.
Proof: (1) ⇒ (3) , by the Theorem 9. (3) ⇒ (2) , every quasi-ideal of S is a bi-ideal of S, by the

Lemma 12. (2)⇒ (1) , by the Theorem 10.
Theorem 12. Let S be an ordered AG-groupoid with left identity e such that (xe)S = xS for all

x ∈ S. Then the following conditions are equivalent.
(1) S is regular and intra-regular.
(2) Q1 ∩Q2 ⊆ (Q1Q2] for all quasi-ideals Q1, Q2 of S.
(3) Q ∩B ⊆ (QB] for every quasi-ideal Q and every bi-ideal B of S.
(4) B ∩Q ⊆ (BQ] for every bi-ideal B and every quasi-ideal Q of S.
(5) B1 ∩B2 ⊆ (B1B2] for all bi-ideals B1, B2 of S.
Proof: Suppose that (1) holds. Let B1, B2 be bi-ideals of S, then B1 ∩ B2 be also a bi-ideal of S.

Since every bi-ideal of S is an idempotent by the Theorem 9, then B1 ∩ B2 = ((B1 ∩ B2)
2] =

= ((B1 ∩ B2)(B1 ∩ B2)] ⊆ (B1B2]. Hence (1) ⇒ (5) . Since (5) ⇒ (4) ⇒ (2) and (5) ⇒ (3) ⇒ (2) ,
because every quasi-ideal of S is a bi-ideal of S by the Lemma 12. Assume that (2) is true.
Now R ∩ L ⊆ (RL], where R is a right ideal and L is a left ideal of S. Since (RL] ⊆ R ∩ L, i.e.,
R ∩ L = (RL], thus S is regular. Again by (2) L ∩ R ⊆ (LR], thus S is an intra-regular. Therefore
(2)⇒ (1) .

Conclusion

In this article, we have characterized the non-associative ordered semigroups in terms of their one-
sided ideals, ideals, interior ideals, bi-ideals and quais ideals. We have also characterized the intraregular
and regular orderded AG-groupoids through the properties of their ideals.
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Н. Каусар, М. Мунир, М. Гульзар, Г. М. Аддис

Реттелген AG-группоидтардың әртүрлi идеалды
кластарының қасиеттерi бойынша сипаттамасы

Мақалада ассоциативтi емес жартылай группалардың идеалдарына қатысты кейбiр маңызды си-
паттамалар ұсынылған. Бiрiншiден, бiз реттелген AG-группоидты оның идеалының қасиеттерi тұрғы-
сынан сипаттадық, содан кейiн осы AG-группоидтардың екi маңызды класына, яғни регулярлық және
iшкi регулярлық емес ассоциативтi емес AG-группоидтарға сипаттама бердiк. Бiздiң мақсатымыз –
реттелген AG-группоид деп аталатын ассоциативтi емес және коммутативтi емес алгебралық құры-
лымдар класын зерттеу арқылы ассоциативтi алгебралық құрылымдарды зерттеу мен дамытуды
ынталандыру.

Кiлт сөздер: реттелген AG-группоидтар, солға (оң, iшкi, квази-, би-, жалпыланған би-) идеалдар,
регулярлық (iшкi регулярлық) реттелген AG-группоидтар.

Н. Каусар, М. Мунир, М. Гульзар, Г. М. Аддис

Характеризация упорядоченных AG-группоидов
через свойства их различных классов идеалов

В статье представлены некоторые важные характеристики упорядоченных неассоциативных полу-
групп относительно их идеалов. Сначала были охарактеризован упорядоченный AG-группоид через
свойства его идеалов, затем два важных класса этих AG-группоидов, а именно, регулярные и внут-
рирегулярные неассоциативные AG-группоиды. Цель настоящей работы — стимулирование исследо-
вания и развитие ассоциативных алгебраических структур путем изучения класса неассоциативных
и некоммутативных алгебраических структур, называемых упорядоченным AG-группоидом.

Ключевые слова: упорядоченные AG-группоиды, левые (правые, внутренние, квази-, би-, обобщенные
би-) идеалы, регулярные (внутрирегулярные) упорядоченные AG-группоиды.

112 Bulletin of the Karaganda University


