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Characterizing the Ordered AG-Groupoids Through
the Properties of Their Different Classes of Ideals

In this article, we have presented some important charcterizations of the ordered non-associative semigroups
in relation to their ideals. We have initially characterized the ordered AG-groupoid through the properties
of the their ideals, then we characterized the two important classes of these AG-groupoids, namely the
regular and intragregular non-associative AG-groupoids. Our aim is also to encourage the research and the
maturity of the associative algebraic structures by studying a class of non-associative and non-commutative
algebraic structures called the ordered AG-groupoid.
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Introduction

In 1972, a generalization of commutative semigroups has been established by Kazim et. al [1]. In
ternary commutative law: abc = cba, they introduced the braces on the left side of this law and explored
a new pseudo associative law, that is (ab)c = (cb)a. They have called the left invertive law of this law.
A groupoid S is said to be a left almost semigroup (abbreviated as LA-semigroup) if it satisfies the left
invertive law : (ab)c = (c¢b)a. This structure is also known as Abel-Grassmann’s groupoid (abbreviated
as AG-groupoid) in [2]. An AG-groupoid is a midway structure between an abelian semigroup and a
groupoid. Mushtaq et. al [3], investigated the concept of ideals in AG-groupoids.

In [4] (resp. [5]), a groupoid S is said to be medial (resp. paramedial) if (ab)(cd) = (ac)(bd) (resp.
(ab)(cd) = (db)(ca)). In [1], an AG-groupoid is medial, but in general an AG-groupoid needs not to be
paramedial. Every AG-groupoid with left identity is paramedial by Protic et. al [2] and also satisfies
a(be) = b(ac), (ab)(cd) = (de)(ba).

In [6,7], if (S,-, <) is an ordered semigroup and () # A C S, we define a subset of S as follows :
(A] = {s € S:s < afor some a € A}. A non-empty subset A of S is called a subsemigroup of S if

A non-empty subset A of S is called a left (resp. right) ideal of S if following hold (1) SA C A
(resp. AS C A). (2) If a € A and b € S such that b < a implies b € A. Equivalent definition: A is
called a left(resp. right) ideal of S if (A] C A and SA C A (resp. AS C A).

A non-empty subset A of S is called an interior (resp. quasi-) ideal of S if (1) SAS C A (resp.
(AS]N(SA] C A). (2) If a € A and b € S such that b < a implies b € A.

A subsemigroup (A non-empty subset) A of S is called a bi- (generalized bi-) ideal of S if (1)
ASAC A. (2)If a € A and b € S such that b < a implies b € A. Every bi-ideal of S is a generalized
bi-ideal of S.
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In [7,8], an ordered semigroup is said to be regular if for every a € S, there exists an element
x € S such that a < aza. Equivalent definitions are as follows: (1) A C (ASA] for every A C S.
(2) a € (aSa] for every a € S.

In [9,10], an ordered semigroup S is intra-regular if for every a € S there exist elements x,y € S such
that a < xa’y. Equivalent definitions are as follows: (1) A C (SA29] for every A C S. (2) a € (Sa?9)] for
every a € S.

We will define left (right, interior, quasi-, bi-, generalized bi-) ideals in ordered AG-groupoids. We
will establish a study by discussing the different properties of such ideals. We will also characterize
regular (resp. intra-regular, both regular and intra-regular) ordered AG-groupoids by the properties of
left (right, quasi-, bi-, generalized bi-) ideals.

Ideals in Ordered AG-groupoids

An ordered AG-groupoid S, is a partially ordered set, at the same time an AG-groupoid such that
a < b, implies ac < bc and ca < ¢b for all a,b, ¢ € S. Two conditions are equivalent to the one condition
(ca)d < (cb)d for all a,b,c,d € S.

Ezxample 1. Consider a set S = {e, f, a, b, c} with the following multiplication
13 <77

H‘”

and order relation

A Q=0
0 Q@ —olo
SHESELNEE NG
S0 0 ele
A - > o o

0 o oo

f

<={(e,€),(e,a),(e,b), (e, ), (f, [), (f,0), (f, ), (a,a),(a,c), (b,), (b,c), (¢,c)}.

Then (S, -, <) is an ordered AG-groupoid with left identity e.

For ) # A C S, we define a subset (4] = {s € S : s < a for some a € A} of S and obviously
A C (A]. For ) # A,B C S, then ((A]] = (4], (A](B] C (AB], ((A|(B]] = (AB], if A C B, then
(A] C (B], (An B] # (AN (B], in general.

For ) # A C S. Then A is called an ordered AG-subgroupoid of S if A2 C A. A is called a left
(resp. right) ideal of S if the following hold (1) SA C A (resp. AS C A). (2) If a € A and b € S such
that b < a implies b € A. A is called an ideal of S if A is both a left and a right ideal of S.

We denote by L(a), R(a), I(a) the left ideal, the right ideal and the ideal of S, respectively, generated
by a. we have L(a) = {s € S : s < aor s < za for some z € S} = (aU Sa], R(a) = (a U aS],
I(a) = (aU SaUaSU(Sa)S].

A non-empty subset A of an ordered AG-groupoid S is called an interior (resp. quasi-) ideal of S
if (1) (SA)S C A (resp. (AS]N(SA] C A). (2) If a € A and b € S such that b < a implies b € A.

An AG-subgroupoid A of S is called a bi-ideal of S if (1) (AS)A C A. (2) Ifa € Aand b e S
such that b < a implies b € A. A non-empty subset A of S is called generalized bi-ideal of S if (1)
(AS)AC A. (2) If a € A and b € S such that b < a implies b € A.

Now we give the imperative properties of such ideals of an ordered AG-groupoid .S, which will be
play a vital rule in the later sections. Specifically we show:

(1) Let S be an ordered AG-groupoid with left identity e. Then every right ideal of S is a ideal of
S.

(2) Let S be an ordered AG-groupoid with left identity e, such that (ze)S = xS for all z € S. Then
every quasi-ideal of S is a bi-ideal of S.

Lemma 1. Let S be an ordered AG-groupoid with left identity e. Then SS = S and eS = § = Se.

Proof: Since SS C S and ¢ = ex € 5§, i.e.,, S C S5, thus S = 5. Obviously, eS = S and
Se=(SS)e=(eS)S=55=5¢.
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Lemma 2. Let S be an odered AG-groupoid with left identity e and a € S. Then Sa is a smallest
left ideal of S containing a.
Proof: Let x € Sa and s € S, this implies that z = s1a, where s; € S. Now

st = s(s1a) = (es)(s1a) = ((s1a)s)e = ((s1a)(es))e
= ((s1e)(as))e = (e(as))(s1e) = (as)(s1e) = ((s1€)s)a € Sa.

Thus sz € Sa and (Sa] C Sa. Since a = ea € Sa, hence Sa is a left ideal of S containing a. Let [
be another left ideal of S' containing a. Since sa € I, because [ is a left ideal of S. But sa € Sa, this
means that Sa C I. Therefore Sa is a smallest left ideal of S containing a.

Lemma 3. Let S be an odered AG-groupoid with left identity e and a € S. Then aS is a left ideal
of S.

Proof: Straight forward.

Proposition 1. Let S be an ordered AG-groupoid with left identity e and a € S. Then aS U Sa is a
smallest right ideal of S containing a.

Proof: Let x € aS U Sa. We have to show that (aS'U Sa)S C aSU Sa. Now

(aSUSa)S = (aS)SU(Sa)S = (SS)aU (Sa)(eS)
C SauU(Se)(aS) = SaU S(aS)
= SaUa(SS) C SaUaS =aSUSa.

Thus (aS U Sa)S C aSU Sa and (aS U Sa] C aS U Sa. Therefore a.S U Sa is a right ideal of S. Since
a € Sa, ie., a € aS U Sa. Let I be another right ideal of S containing a. Now aS € IS C I and
Sa = (SS)a = (aS)S € (IS)SCISC1, ie.,aSUSaCI. Hence aSU Sa is a smallest right ideal of
S containing a.

Lemma 4. Let S be an ordered AG-groupoid with left identity e. Then every right ideal of S is an
ideal of S.

Proof: Let R be a right ideal of S and r € R,s € S. Now sr = (es)r = (rs)e € (RS)S C RS C R.
Thus SR C R and (R] € R. Hence R is an ideal of S.

Lemma 5. Let S be an ordered AG-groupoid with left identity e such that (ze)S = zS for all
xz € S. Then (AS)S C AS and (AS]S C (AS].

Proof: Since

(AS)S = (AS)(eS) = (Ae)(SS) C (Ae)S = AS.
and (AS]S = (AS](S] C ((AS)S] C (AS).

Remark 1. Let S be an ordered AG-groupoid with left identity e such that (ze) S = xS for all
z € S, then (AS] is an ideal of S.

Let S be an ordered AG-groupoid with left identity e such that (ze) S = xS for all z € S and
A,B C S. Then (AS)(BS) C (AB)S and (AS]|(BS]| C ((AB)S]. Similarly (SA)(SB) C S(AB) and
(SAJ(SB] C (S(AB)].

In general for Aj, As,..., Ay, C S, then (A15)(A2S)...(4,S) C (A1As, ..., A,)S and (A1S5](A25]...
(4,5] € (A1 As, ... Ay)S].

Similarly, (SA1)(SA2)...(SA,) € S(A14s, ..., Ay) and (SA1](SAs]....(SA,] C (S(A1Aq, ..., Ay)].

Lemma 6. Let S be an ordered AG-groupoid. A is a right ideal of S and B is a right ideal of A,
then (B] = B.

Proof: Since (B] = {s € S| s < b for some b € B} and s € (B], this implies that there exists an
element s € S such that s < bforsomebe BC A. Thus S>3s<bec A Now A>s<be BandBis
a right ideal of A, i.e., s € B, so (B] C B. Since B C (B], thus (B] = B.
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Proposition 2. Let S be an ordered AG-groupoid with left identity e such that (ze)S = xS for all
x € S. Ais a right ideal of S and B is a right ideal of A such that (B?] = B. Then B is an ideal of S.
Proof: We have to show that B is a right ideal of S. Now

BS (B%)S = (B*)(S] € (B*S] = (BB)S]
= ((SB)B] € ((5B)A] = ((SB)(eA)]
= ((5e)(BA)] = (B((Se)A)] = (B((4¢)5)]
= (B(AS)] C (BA] C (B] = B by the Lemma 6.

Thus BS C B and (B] C B, i.e., B is a right ideal of S. Hence B is an ideal of S by the Lemma 4.

Lemma 7. Let S be an ordered AG-groupoid. A is a left ideal of S and B is a left ideal of A, then
(B] = B.

Proof: Same as Lemma 6.

Proposition 3. Let S be an ordered AG-groupoid with left identity e. A is a left ideal of S and B
is a left ideal of A such that (B2 = B. Then B is left ideal of S.

Proof: We have to show that B is a left ideal of S. Now

SB = S(B% = (S|(B” < (SB°] = (S(BB)

( ]

c ( | C(AB] C (B] = B, by the Lemma 7.

Thus SB C B and (B] C B. Hence B is a left ideal of S.

Lemma 8. Every two-sided ideal of S is an interior ideal of S.

Proof: Straight forward.

Proposition 4. Let S be an ordered AG-groupoid with left identity e. Then any non-empty subset
I of S is an ideal of S if and only if I is an interior ideal of S.

Proof: Suppose that I is an interior ideal of S. Let ¢ € I and s € S. Now is = (ei)s € (SI)S C I,
this implies that I.S C I and (I] C I, i.e., I is a right ideal of S. Hence I is an ideal of S by the Lemma
4. Converse is true by the Lemma 8.

Lemma 9. Every right (two-sided) ideal of S is a bi-ideal of S.

Proof: Straight forward.

Lemma 10. Every bi-ideal of S is a generalized bi-ideal of S.

Proof: Obvious.

Lemma 11. Every left (right, two-sided) ideal of S is a quasi-ideal of S.

Proof: Let I be a right ideal of S. Now (IS] N (SI] € (IS] C (I] € I and (I] C I. Thus I is a
quasi-ideal of S.

Proposition 5. Every quasi-ideal of S is an ordered AG-subgroupoid of S.

Proof: Suppose that I is a quasi-ideal of S. Now IT C I.S C (I](S] C (IS] and II C SI C (S|(I] C
C (SI], i.e., I? =11 C (IS N (SI] C I. Hence I is an AG-subgroupoid of S.

Proposition 6. Let R be a right ideal and L be a left ideal of an ordered AG-groupoid S, respectively.
Then RN L is a quasi-ideal of S.

Proof: Since (RN L)S]N(S(RNL)] C (RS]N(SL]C (RN(LJ]C RNLand (RNL] =RNL.
Thus RN L is a quasi-ideal of S.

Lemma 12. Let S be an ordered AG-groupoid with left identity e such that (ze) S = xS for all
x € S. Then every quasi-ideal of S is a bi-ideal of S.

Proof: Let @ be a quasi-ideal of S. Now (QS5)Q C (55)Q C SQ C (SQ] and (QS)Q C (QS)S =
= (@5)(eS) = (Qe)(55) = (Qe)S = Q5 € (QS], thus (RQS)Q S (@S] N (SQ] S Q. Therefore
(QRS)Q C @ and (Q] C Q. Hence @ is a bi-ideal of S.
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Regular Ordered AG-groupoids

An ordered AG-groupoid S is called regular if for every a € S, there exists an element € S such
that a < (ax)a. Equivalent definitions are as follows:

(1) AC((AS)A] for every A C S.

(2) a € ((aS)a] for every a € S.

An ideal I of an ordered AG-groupoid S is called idempotent if (I?] = I.

In this section, we characterize regular ordered AG-groupoids by the properties of (left, right, quasi-,
bi-, generalized bi-) ideals.

Lemma 13. Every right ideal of a regular ordered AG-groupoid S

Proof: Let R be a right ideal of S. Let r € R and a € S, this implies that there exists an element
z € S such that a < (ax)a. Now ar < ((ax)a)r = (ra)(ax) € RS C R, thus SR C R and (R] = R.
Hence R is an ideal of S.

Lemma 14. Every ideal of a regular ordered AG-groupoid S is an idempotent.

Proof: Suppose that I is an ideal of S and (I?] = (II] C (I] = I. Let a € I, this mean that there
exists an element x € S such that a < (az)a. Now a < (ax)a € (IS)I C IT = 1% ie., I C (I?].
Therefore (I%] = I.

Remark 2. Every right ideal of a regular ordered AG-groupoid S is an idempotent.

Proposition 7. Let S be a regular ordered AG-groupoid. Then any non-empty subset I of S is an
ideal of S if and only if I is an interior ideal of S.

Proof: Assume that [ is an interior ideal of S. Let @ € I and s € S, then there exists an element
z € S, such that a < (ax)a. Now as < ((ax)a)s = (sa)(azx) € (SI)S C I. Thus IS C I and (I] = I,
i.e., I is a right ideal of S. Hence I is an ideal of S by the Lemma 4. Converse is true by the Lemma
13.

Proposition 8. Let S be a regular ordered AG-groupoid with left identity e. Then (IS]N(SI] =1,
for every right ideal I of S.

Proof: Let I be an ideal of S. This implies that (I.S] N (SI] C I, because every ideal of S is a
quasi-ideal of S. Let a € I, this means that there exists an element x € S such that a < (az)a. Now
a < (ax)a € (IS)I CII C IS, ie., I C (IS]. Now a < (ax)a = (ax)(ea) = (ae)(za) € 11 C SI, ie.,
I C (SI]. Thus I C (IS]N(SI]. Hence (IS]N(SI] = 1.

Lemma 15. Let S be a regular ordered AG-groupoid. Then (RL] = RN L, for every right ideal R
and every left ideal L of S.

Proof: Since (RL] C (RS] C (R] = Rand (RL] C (SL] C
this implies that there exists an element x € S such that a
i.e., RNL C (RL]. Therefore (RL] = RN L.

Theorem 1. Let S be an ordered AG-groupoid with left identity e such that (ze) S = xS for all
x € S. Then the following conditions are equivalent.

(L]=L,ie., (RL] C RNL.Leta € RNL,
< (ax)a. Now a < (ax)a € (RS)L C RL,

(1) S is a regular.

(2) RN L = (RL] for every right ideal R and every left ideal L of S.

(3) Q = ((QS5)Q)] for every quasi-ideal @ of S.

Proof: Suppose that (1) holds. Let @ be a quasi-ideal of S and a € @, this implies that there exists
an element z € S such that a < (az)a. Now a < (az)a € (QS)Q, ie., Q@ C ((QS)Q] C (Q] = Q,
because every quasi-ideal of S is a bi-ideal of S. Hence @ = ((QS5)Q], i.e., (1) = (3). Assume that
(3) holds, let R be a right ideal and L be a left ideal of S. Then R and L be quasi-ideals of S by the
Lemma 11, so RN L be a quasi-ideal of S. Now RN L = ((RNL)S)(RN L)) € ((RS)L] C (RL].
Since (RL] C RN L,so (RL] = RNL,1ie., (3) = (2). Suppose that (2) is true, let a € S, then Sa is
a left ideal of S containing a by the Lemma 2 and aS U Sa is a right ideal of S containing a by the
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Proposition 1. By (2),

(@SUSa)NSa = ((aSUSa)(Sa)] = ((aS)(Sa)U (Sa)(Sa)].
(Sa)(Sa) = ((Se)a)(Sa) = ((ae)S)(Sa) = (aS)(Sa).

Thus

(aSUSa)NSa = ((aS)(Sa)U (Sa)(Sa)l
= ((aS)(Sa) U (aS)(Sa)] = ((aS)(Sa)].

Since a € (aS U Sa) N Sa, Implies a € ((aS)(Sa)]. Then a < (az)(ya) = ((ya)z)a = (((ey)a)r)a =
= (((ay)e)z)a = ((ze)(ay))a = (a((ze)y))a € (aS)a for any z,y € S, ie., a € ((aS)a]. Hence a is
regular, so S is a regular, i.e., (2) = (1).

Theorem 2. Let S be an ordered AG-groupoid with left identity e such that (ze) S = xS for all
x € S. Then the following conditions are equivalent.

(1) S is a regular.

(2) Q@ = ((QS)Q)] for every quasi-ideal @ of S.

(3) B = ((BS)B] for every bi-ideal B of S.

(4) G = ((GS)G] for every generalized bi-ideal G of S.

Proof: (1) = (4), is obvious. (4) = (3), since every bi-ideal of S is a generalized bi-ideal of S by
the Lemma 10. (3) = (2), since every quasi-ideal of S is bi-ideal of S by the Lemma 12. (2) = (1),
by the Theorem 1.

Theorem 3. Let S be an ordered AG-groupoid with left identity e such that (ze) S = xS for all
x € S. Then the following conditions are equivalent.

(1) S is a regular.

(2) QNI = ((QI)Q)] for every quasi-ideal @ and every ideal I of S.

(3) BN I = ((BI)B] for every bi-ideal B and every ideal I of S.

(4) GNI = ((GI)G] for every generalized bi-ideal G and every ideal I of S.

Proof: Suppose that (1) is true. Let G be a generalized bi-ideal and I be an ideal of S. Now
((GDG] € ((SI)S] € (I] = I and ((GI)G] C ((GS)G] C (G] = G, thus ((GI)G] € GNI. Let
a € G NI, this means that there exists an element z € S such that a < (ax)a. Now a < (ax)a =
= (((ax) Jx)a = ((za)(ax))a = (a((za)z))a € (GI)G, thus GNI C ((GI)G]. Hence GN I = ((GI)G],

5 (1) =(4). (4) = (3), since every bi-ideal of S is a generalized bi-ideal of S by the Lemma 10.
(3) = (2), since every quasi-ideal of S is a bi-ideal of S by the Lemma 12. Assume that (2) is true.
Now QNS = ((QS)Q], ie., Q = ((QS)Q], where @ is a quasi-ideal of S. Hence S is a regular by the
Theorem 1.

Theorem 4. Let S be an ordered AG-groupoid with left identity e such that (ze) S = xS for all
x € S. Then the following conditions are equivalent.

1) S is a regular.

2) RNQ C (RQ)] for every quasi-ideal ) and every right ideal R of S.

3) RN B C (RB] for every bi-ideal B and every right ideal R of S.

4) RN G C (RG] for every generalized bi-ideal G and every right ideal R of S.

Proof: (1) = (4), is obvious. (4) = (3), since every bi-ideal of S is a generalized bi-ideal of S.
(3) = (2), since every quasi-ideal of S is a bi-ideal of S by the Lemma 12. . Suppose that (2) is true.
Now RNQ = Q@ N R C (RQ], where @Q is a left ideal and R is right ideal of S, because every left
ideal of S is a quasi-ideal of S. Since (RQ] € RN Q, thus RN Q = (RQ)]. Hence S is a regular, by the
Theorem 1.

(
(
(
(
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Intra-reqular Ordered AG-groupoids

An ordered AG-groupoid S is called intra-regular if for every a € S, there exist elements z,y € S
such that a < (za?)y. Equivalent definitions are as follows:

(1) A C ((SA?)S] for every A C S.

(2) a € ((Sa?)S) for every a € S.

In this section, we characterize intra-regular ordered AG-groupoids by the properties of (left, right,
quasi-, bi-, generalized bi-) ideals.

Lemma 16. Every left (right) ideal of an intra-regular ordered AG-groupoid S is an ideal of S.

Proof: Let R be a right ideal of S. Let » € R and a € S, this implies that there exist elements
x,y € S such that a < (za?)y. Now ar < ((za®)y)r = (ry)(za®?) € RS C R. Thus SR C R and
(R] C R. Hence R is an ideal of S.

Lemma 17. Every ideal of an intra-regular ordered AG-groupoid S with left identity e, is an
idempotent.

Proof: Suppose that I is an ideal of S and (%] = (II] C (I] = I. Let a € I, this means that there
exist elements z,y € S such that a < (za?)y. Now

a < (za)y = (z(aa))y = (a(za))y
= (a(za))(ey) = (ae)((za)y) = (za)((ae)y) € I1.
Thus a € (II] = (I%]. Therefore (1] = 1.
Proposition 9. Let S be an intra-regular ordered AG-groupoid with left identity e. Then any non-
empty subset I of S is an ideal of S if and only if [ is an interior ideal of S.
Proof: Assume that I is an interior ideal of S. Let ¢ € I and a € S, then there exist elements
z,y € S such that x < (yx?)z. Now
ia < i((za®)y) =i((z
= i((a(za))y) = i(
— i((ae)((wa)y)) = i((za)((ae)y))
= (za)(i((ae) ae)y)) € (SI)S C 1.
Thus IS C I and (I] C I, i.e., I is a right ideal of S. So I is an ideal of S by the Lemma 16.
Converse is obvious.
Lemma 18. Let S be an intra-regular ordered AG-groupoid with left identity e. Then LN R C (LR)]
for every left ideal L and every right ideal R of S.

Proof: Let a € L N R, where L is a left ideal and R is a right ideal of S, respectively, this implies
that there exist elements z,y € S such that a < (za?)y. Now

a < (za’)y = (2(aa))y = (a(za))y = (a(za))(ey)
(ae)((za)y) = (za)((ae)y) € LR.
= LNRC(LR].

Theorem 5. Let S be an ordered AG-groupoid with left identity e such that (ze) S = xS for all
x € S. Then the following conditions are equivalent.
(1) S is an intra-regular.
(2) LN R C (LR) for every left ideal L and every right ideal R of S.
Proof: Since (1) = (2) holds by the Lemma 18. Suppose that (2) holds and a € S, then Sa is a left
ideal of S containing a and aS U Sa is a right ideal of S containing a. By our supposition
San(aSUSa) C ((Sa)(aSUSa)l=((Sa)(aS)U (Sa)(Sa)l.
(Sa)(aS) = (Sa)((ea)S) = (Sa)((Sa)e) = (Sa)((Sa)(ee))
= (Sa)((Se)(ae)) = (Sa)(S(ae)) = (Sa)(Sa).
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Thus
(aSUSa)NSa € ((Sa)(asS)U (Sa)(Sa)]
= ((Sa)(Sa) U (Sa)(Sa)]
= ((Sa)(Sa)] = (5%a’] = (Sa’]
= (S(a®e)] = ((59)(a%e)] = ((eS)(a*S)] = (S(a®S5)]
= (a*(59)] = ((ea®)(S5)] = ((Sa?)(Se)] = ((Sa*)$]

Since a € (aSUSa)NSa, implies a € ((Sa?)S], thus a is an intra regula. Hence S is an intra-regular,
ie, (2)=(1).

Theorem 6. Let S be an ordered AG-groupoid with left identity e such that (ze) S = S for all
x € S. Then the following conditions are equivalent.

(1) S is an intra-regular.

(2) QNI = ((QI)Q)] for every quasi-ideal @ and every ideal I of S.

(3) BN I = ((BI)B] for every bi-ideal B and every ideal I of S.

(4) GNI = ((GI)G] for every generalized bi-ideal G and every ideal I of S.

Proof: Suppose that (1) holds. Let a € GN I, where G is a generalized bi-ideal and I is an ideal of
S, this implies that there exist elements z,y € S such that a < (za?)y. Now

a < (za’)y = (2(aa))y = (a(za))y = (y(za))a.
y(za) < ylz((za®)y)) = y((za®)(zy)) = (za®)(y(zy))
= (za®)(zy?) = (z(aa))m, say zy*> =m
= (a(za))m = (m(za))a.
m(za) < m(z((za®)y)) = m((za®)(zy)) = (za?)(m(zy))

= wa, say n(za) =v.

= y(za) = (m(za))a = (va)a = (va)(ea) = (ve)(aa) = a((ve)a).

Thus a < (za®)y = (y(za))a = (a((ve)a))a € (GI)G. This means that a € ((GI)G], i.e.,
GNI C (GIHG]. Now ((GI)G] C ((SI)S] € (I] = I and ((GI)G] C ((GS)G] C (G] = G, thus
((GI)G] € GNI. Hence GNI = ((GI)G], ie., (1) = (4). (4) = (3), every bi-ideal of S is a
generalized bi-ideal of S by the Lemma 10. (3) = (2), every quasi-ideal of S is a bi-ideal of S by the
Lemma 12. Assume that (2) is true and let R be a right ideal and I be a two-sided ideal of S. Now
INR = ((RI)R] C ((SI) R] C (IR], since every right ideal of S is a quasi-ideal of S. Therefore S is an
intra-regular by the Theorem 5, i.e., (2) = (1).

Theorem 7. Let S be an ordered AG-groupoid with left identity e such that (ze) S = xS for all
x € S. Then the following conditions are equivalent.

(1) S is an intra-regular.

(2) LN Q C (LQ) for every quasi-ideal @) and every left ideal L of S.

(3) LN B C (LB for every bi-ideal B and every left ideal L of S.

(4) LN G C (LG] for every generalized bi-ideal G and every left ideal L of S.

Proof: Suppose that (1) holds. Let a € LN G, where L is a left ideal and G is a generalized bi-ideal
of S, this means that there exist elements x,y € S such that a < (za?)y. Now a < (za?)y = (z(aa))y =
= (a(za))y = (y(za))a € LG, ie., a € (LG]. Thus LN G C (LG, ie., (1) = (4). (4) = (3), every
bi-ideal of S is a generalized bi-ideal of S. (3) = (2), every quasi-ideal of S is a bi-ideal of S. Assume
that (2) is true and let R be a right ideal of S and L be a left ideal of S. Now L N R C (LR], where R
is a quasi-ideal of S. Hence S is an intra-regular by the Theorem 5, i.e., (2) = (1).
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Theorem 8. Let S be an ordered AG-groupoid with left identity e such that (ze) S = xS for all
x € S. Then the following conditions are equivalent.
(1) S is an intra-regular.
(2) LNQNR C ((LQ)R] for every quasi-ideal @, every right ideal R and every left ideal L of S.
(3) LN BN R C ((LB)R] for every bi-ideal B, every right ideal R and every left ideal L of S.
(4) LNGNRC ((LG)R] for every generalized bi-ideal G, every right ideal R and every left ideal
L of S.
Proof: Suppose that (1) holds. Let a € LNGN R, where L is a left ideal, G is a generalized bi-ideal

and R is a right ideal of S, this implies that there exist elements x,y € S such that a < (xa?)y. Now

a < (za®)y = (z(aa))y = (a(za))y = (y(za))a.
y(za) < y(z((za®)y)) = y((za®)(zy)) = (za®)(y(zy))
= (2za®)(zy?) = (¢(aa))m, say zy® =m

= (a(za))m = (m(za))a

Thus a < (za?)y = (y(za))a = ((m(xa))a)a € (LG)R, i.e., a € (LG)R]. Hence LN GN R C
C ((LG)R], ie., (1) = (4). (4) = (3), every bi-ideal of S is a generalized bi-ideal of S. (3) = (2),
every quasi-ideal of S is a bi-ideal of S. Assume that (2) is true. Now

LnSNR < ((LSR] = (((eL)S)R] = (SL)e)R] = (((SL)(ee)) R]
= (((Se)(Le))R] € ((S(Le))R] € ((SL)R] € (LR].
= LNRC(LR].

Hence S is an intra-regular by the Theorem 5, i.e., (2) = (1).
Regular and Intra-reqular Ordered AG-groupoids

In this section, we characterize both regular and intra-regular ordered AG-groupoids by the properties
of (left, right, quasi-, bi-, generalized bi-) ideals.

Theorem 9. Let S be an ordered AG-groupoid with left identity e such that (ze) S = xS for all
x € S. Then the following conditions are equivalent.

(1) S is a regular and an intra-regular.

(2) (B?] = B for every bi-ideal B of S.

(3) B1 N B2 = (BlBQ] (BQBl] for all bi-ideals Bl, BQ of S.

Proof: Suppose that (1) holds and B be a bi-ideal of S. Since (B? = (BB] C (B] = B. Let a € B,
this implies that there exists an element = € S such that a < (az)a, also there exist elements y, z € S
such that a < (ya?)z. Now

(ya*)z)e =

— ((an)a)(ya) = (sa)(ya), say 5 = an
aa)(ys) = (aa)t, say t = ys
((az)a)a)t = ((aa)(ax))t = (t(azx))(aa)

)
a(tz))(aa) = (aw)(aa), say w = tz.

IN
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Thus a < (((ya?)2)z)a < ((aw)(aa))a € (BS)B)B C B2, ie., a € (B%. So B C (B, ie.,
(B?] = B. Hence (1) = (3). Assume that (2) is true. Let By, By be bi-ideals of S, then BN By be also
a bi-ideal of S. Now B; N By = ((Bl N BQ)(Bl N Bg)] - (BlBQ] and B1 N By = ((Bl N Bg)(Bl N Bz)] -
C (ByBy], thus By N By C (B1Bs] N (ByBy]. First of all we have to show that (BBs] is a bi-ideal of S.
It is enough to show that ((B1B2]S)(B1Bs] C (B1B2]. Now

((BiBs)S)(BiBs] =

N 1N

=

Thus (B1Bs] is a bi-ideal of S, similarly (B2Bj] is also a bi-ideal of S. Then (B;Bz] N (B2By] is
also a bi-ideal of S. Now

(B1Ba2] N (B2B1] = (((B1B2] N (B2B1])((B1B2] N (B2B1])]

C  ((B1B2|(B2B1]] € (((B1B2)(B2B1)]]

= ((B1B2)(B2B1)] € ((B15)(SB1)]

= (((5B1)S)B1] = ((((Se)B1)S)Bi]

= ((((B1€)9)S)Bi1] = (((B15)5)Bi]

= (((SS)B1)B1] = ((S )Bl] = (((Se)B1)Bi]
(((B1e)S)B1] = ((B1S)B1] € (B1]

= (B1B2| N (ByB1] C (B1] = By.

Similarly, we have (B1Bs2| N (B2Bi1] C (B2] = Ba, thus (B1Ba] N (B2Bi] € By N By. Therefore
By N By = (B1B2] N (B2By], ie., (2) = (3). Suppose that (3) holds, let R be right ideal of S and I
be an ideal of S. Then R and I be bi-ideals of S, because every right ideal and two sided ideal of S is
bi-ideal of S by the Lemma 9. Now RN I = (RI] N (I R], this implies that RN I C (RI] N (IR]. Thus
RNI C (RI] and RNI C (IR], where I is also a left ideal of S. Since (RI] C RN 1, i.e., (RI]=RNI,
thus S is a regular by the Theorem 1. Also, RN I C (IR], thus S is an intra-regular by the Theorem
5. Hence (3) = (1).

Theorem 10. Let S be an ordered AG-groupoid with left identity e such that (ze) S = xS for all
x € S. Then the following conditions are equivalent.

(1) S is regular and intra-regular.

(2) Every quasi-ideal of S is an idempotent.

Proof: Suppose that (1) holds. Let @ be a quasi-ideal of S and (Q?] = (QQ] C (Q] = Q, i.e.,
(Q?] C Q. Let a € @, this implies that there exists an element z € S such that a < (ax)a, also there
exist elements y, z € S such that a < (ya?)z. Now
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(az)((ya®)z) = (((ya*)2)z)a.
ya®) = m(ya?), say m = zz
) = m(a(ya)) = a(m(ya))
ya)) = ((ax)m)(a(ya))
ya)) = (qa)(a(ya)), say ¢ =ma
) = ((ag)e)(a(ya))
) = ((ag)a)(ya) = (sa)(ya), say s = aq
= (aa)t, say t = ys
(aa)(az))t = (t(az))(aa)

aw)(aa),say w = tx

((ya*)z)z =

|
A~ N N /N /N /N

IN

—~

Thus a < (((ya?)2)x)a < ((aw)(aa))a € ((QS)Q)Q € QQ C Q2 ie., a € (Q?, because every
quasi-ideal of S is a bi-ideal of S by the Lemma 12. Thus Q C (Q?], i.e., (Q* = Q. Hence (1) = (2).
Assume that (2) is true. Let a € S, then Sa is a left ideal of S containing a, so Sa is a quasi-ideal of S,
because every left ideal of S is a quasi-ideal of S. Now Sa = ((Sa)?] = ((Sa)(Sa)], i.e., a € ((Sa)(Sa)].
Thus S is an intra-regular by the Theorem 5. Now Sa = ((Sa)(Sa)] = (((Se)a)(Sa)] = (((ae)S)(Sa)] =
= ((aS)(Sa)], i.e., a € ((aS)(Sa)]. Thus S is a regular by the Theorem 1. Therefore (2) = (1).

Theorem 11. Let S be an ordered AG-groupoid with left identity e such that (ze) S = xS for all
x € S. Then the following conditions are equivalent.

(1) S is regular and intra-regular.

(2) Every quasi-ideal of S is an idempotent.

(3) Every bi-ideal of S is an idempotent.

Proof: (1) = (3), by the Theorem 9. (3) = (2), every quasi-ideal of S is a bi-ideal of S, by the
Lemma 12. (2) = (1), by the Theorem 10.

Theorem 12. Let S be an ordered AG-groupoid with left identity e such that (ze) S = xS for all
x € S. Then the following conditions are equivalent.

(1) S is regular and intra-regular.

(2) Q1 N Q2 C (Q1Q2] for all quasi-ideals Q1, Q2 of S.

(3) @ N B C (QB] for every quasi-ideal @ and every bi-ideal B of S.
(4) BN Q C (BQ)] for every bi-ideal B and every quasi-ideal @ of S.
(5) B1 N By C (B By] for all bi-ideals By, By of S.

Proof: Suppose that (1) holds. Let By, By be bi-ideals of S, then By N By be also a bi-ideal of S.
Since every bi-ideal of S is an idempotent by the Theorem 9, then Bj N By = ((B; N Bs)?] =
= ((B1 N Bg)(B1 N By)] C (B1Bs]. Hence (1) = (5). Since (5) = (4) = (2) and (5) = (3) = (2),
because every quasi-ideal of S is a bi-ideal of S by the Lemma 12. Assume that (2) is true.
Now RN L C (RL], where R is a right ideal and L is a left ideal of S. Since (RL] C RN L, i.e.,
RN L = (RL], thus S is regular. Again by (2) LN R C (LR], thus S is an intra-regular. Therefore
(2) = (1).

Conclusion

In this article, we have characterized the non-associative ordered semigroups in terms of their one-
sided ideals, ideals, interior ideals, bi-ideals and quais ideals. We have also characterized the intraregular
and regular orderded AG-groupoids through the properties of their ideals.
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H. Kaycap, M. Myunup, M. I'ynbzap, I. M. Amgmauc

Perrenren AG-rpynnouaTapabiH, OPTYPJI UAeaJIIbI
KJIaCTapPbIHBIH, KACUEeTTEePi OOMBIHIIA CUMATTAMACHI

MaxkaJsaja accOnMaTUBTI eMec KapThbLIail rpyNIajgap/IblH HAeajIapblHA KATHICTHI Keibip MaHbI3IbI CH-
narraMaJjap YChIHbLIFaH. Bipinmrigen, 6i3 perrenren AG-rpynmonThl OHBIH UIEAIBIHBIH KACHETTEP] TYPFbI-
CBIHAH CHUMATTAIBIK, COMAH Keitin ocbl AG-TpymmonaTap/IblH eKi MaHbBI3 bl KJIAChIHA, SFHU PETYJISIPJIBIK XKOHE
imki perysspibik emec acconmaruBTi emec AG-rpynmnounarapra cunarrama 6epik. Bizzin mMakcaTbIMbI3 —
perrenren AG-rpymnmouns Jen arajgaTblH aCCOIMATUBTI eMeC KOHEe KOMMYTATUBTI eMeC aJire0paJibiK, Kyphl-
JIBIMJAP KJIACBIH 3€PTTEY apKBLIbI ACCOIMATUBTI aarebpasblkK KypPbUIBIMIAPILI 3€PTTEY MEH JaMBITY/IbI
BIHTAJIAHIBIPY.

Kiam cesdep: perrearen AG-rpynnounarap, cosra (OH, imKi, KBasu-, 6u-, *KajlbUIaHFaH Ou-) nieasagap,
peryssipiblk (imki peryssipibik) perresirer AG-rpymmoungrap.

H. Kaycap, M. Myunup, M. I'ynbzap, I. M. Amgauc

XapakTepusalnus ynopaaodeHHbIX A G-rpynmmonaos
gyepe3 CBOMCTBA UX PA3JIMYHBIX KJAaCCOB M/I€aJIOB

B craTtbe mpencraBiienbl HEKOTODBIE BayKHBIE XAPAKTEPUCTUKY YIIOPSIOUYEHHBIX HEACCOIHMATHUBHBIX IOJIY-
IPYIII OTHOCUTEJBbHO uX uieasoB. CHavasa ObLIM OXapaKTepu30BaH yrnopsgpodeHHblil AG-rpynnon; depes
CBOMCTBaA €ro MJIEAJIOB, 3aTeM JBa BaXKHbIX Kjacca 3Tux AG-rpynnouioB, a UMEHHO, PEryJisipHble U BHYT-
puperyspuble nHeacconuatububle AG-rpynmnonspt. [lesnb nHacrosmeil paboTbl — CTUMYJIUPOBAHUE UCCIIEII0-
BAHUA U PA3BUTHUE ACCOIMATHUBHBIX AJIre0OpPandeCcKUX CTPYKTYDP IIyTeM HU3ydYeHUs KJIacCa HeaCCOIMATUBHBIX
¥ HEKOMMYTATUBHBIX aJre0pandecKux CTPYKTYD, HA3bIBAEMBIX yHOpsgodeHHbiM AG-Tpynmnoniom.

Kmouesvie crosa: ynopamodenunie AG-rpynmnonipl, neBble (IpaBble, BHyTPEHHUE, KBA3H-, OU-, 0600IIEHHbIE
6u-) uzeassl, perysspHble (BHYTPUpEry/spHble) yrnopsgodenasie AG-rpynnonast.
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