Skip to content
BY 4.0 license Open Access Published by De Gruyter November 1, 2019

Roll-to-Roll Hot Embossing of High Aspect Ratio Micro Pillars for Superhydrophobic Applications

  • N. Kodihalli Shivaprakash , J. Zhang , T. Nahum , C. Barry , Q. Truong and J. Mead

Abstract

Many surfaces in nature such as the lotus leaf, cicada wings, water spider legs and gecko feet have attracted attention due to their inherent superhydrophobicity and self-cleaning properties. These surfaces are characterized by water contact angles greater than 150° and contact angle hysteresis < 10°. In this work, a continuous fabrication methodology for production of such superhydrophobic surfaces consisting of well-ordered micro-pillar structures (aspect ratio greater than 1 (1.3)) on a large area polyamide film using roll-to-roll hot embossing process was demonstrated. It was found that the temperature played a significant role in replication. Incomplete replication was observed in regime 1 (150 to 155 °C) and the height of replication was influenced by nip pressure and roll speed due to viscosity variations. In contrast, complete replication was seen in regime 2 (190 to 195 °C) and the height of replication was insensitive to nip pressure and roll speed due to a fairly constant viscosity value. The embossed polyamide surface, once coated with a low surface energy 1H, 1H, 2H, 2H-perfluorooctyltrichlorosilane (PFTS) monolayer, showed super-repellant characteristics with respect to water and demonstrated a successful manufacturing approach to fabricate superhydrophobic surfaces.


Correspondence address, Mail address: Joey Mead, Department of Plastics Engineering and Center for High-rate Nanomanufacturing, University of Massachusetts Lowell, 40 University Avenue Lowell, MA 01854, USA, E-mail:

References

Ahn, S. H., Guo, L. J., “High-Speed Roll-to-Roll Nanoimprint Lithography on Flexible Plastic Substrates”, Adv. Mater., 20, 20442049 (2008) 10.1002/adma.200702650Search in Google Scholar

Barthlott, W., Neinhuis, C., “Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces”, Planta, 202, 18 (1997) 10.1007/s004250050096Search in Google Scholar

Berendsen, C. W., Skeren, M., Najdek, D. and Cerny, F., “Superhydrophobic Surface Structures in Thermoplastic Polymers by Interference Lithography and Thermal Imprinting”, Applied Surf. Sci., 255, 93059310 (2009) 10.1016/j.apsusc.2009.07.001Search in Google Scholar

Blossey, R., “Self-Cleaning Surfaces – Virtual Realities”, Nature Materials, 2, 301 (2003) PMid:12728235; 10.1038/nmat856Search in Google Scholar PubMed

Box, G. E., Behnken, D. W., “Some New Three Level Designs for the Study of Quantitative Variables”, Technometrics, 2, 455475 (1960) 10.1080/00401706.1960.10489912Search in Google Scholar

Cao, L., Hu, H.-H. and Gao, D., “Design and Fabrication of Micro-Textures for Inducing a Superhydrophobic Behavior on Hydrophilic Materials”, Langmuir, 23, 43104314 (2007) PMid:17371061; 10.1021/la063572rSearch in Google Scholar PubMed

Cassie, A., Baxter, S., “Wettability of Porous Surfaces”, Transactions of the Faraday Society, 40, 546551 (1944) 10.1039/tf9444000546Search in Google Scholar

Celia, E., Darmanin, T., Givenchy, E. T., Amigoni, S. and Guittard, F., “Recent Advances in Designing Superhydrophobic Surfaces”, J. Colloid Interface Sci., 402, 118 (2013) PMid:23647693; 10.1016/j.jcis.2013.03.041Search in Google Scholar PubMed

Choi, C.-H., Ulmanella, U., Kim, J., Ho, C. and Kim, C., “Effective Slip and Friction Reduction in Nanograted Superhydrophobic Microchannels”, Phys. Fluids, 18, 087105 (2006) 10.1063/1.2337669Search in Google Scholar

Deng, Y., Yi, P., Peng, L., Lai, X. and Lin, Z., “Experimental Investigation on the Large-Area Fabrication of Micro-Pyramid Arrays by Roll-to-Roll Hot Embossing on PVC Film”, J. Micromech. Microeng., 24, 045023 (2014) 10.1088/0960-1317/24/4/045023Search in Google Scholar

Dumond, J. J., Yee Low, H., “Recent Developments and Design Challenges in Continuous Roller Micro-and Nanoimprinting”, J. Vac. Sci. Technol., B, 30, 010801 (2012) 10.1116/1.3661355Search in Google Scholar

Feng, L., Song, Y., Zhai, J., Liu, B., Xu, J., Jiang, L. and Zhu, D., “Creation of a Superhydrophobic Surface from an Amphiphilic Polymer”, Angew. Chem. Int. Ed., 42, 800802 (2003) PMid:12596204; 10.1002/anie.200390212Search in Google Scholar PubMed

Harmening, M., Bacher, W., Bley, P., El-Kholi, A., Kalb, H., Kowanz, B., Menz, W., Michel, A. and Mohr, J., “Molding of Three Dimensional Microstructures by the LIGA Process”, Proceedings IEEE Micro Electro Mechanical Systems, 202–207 (1992) 10.1109/MEMSYS. 1992.187718Search in Google Scholar

Hong, S.-H., Hwang, J. and Lee, H., “Replication of Cicada Wing's Nano-Patterns by Hot Embossing and UV Nanoimprinting”, Nanotechnology, 20, 385303 (2009) PMid:19713589; 10.1088/0957-4484/20/38/385303Search in Google Scholar PubMed

Ishizawa, N., Idei, K., Kimura, T., Noda, D. and Hattori, T., “Resin Micromachining by Roller Hot Embossing”, Microsyst. Technol., 14, 13811388 (2008) 10.1007/s00542-007-0552–5Search in Google Scholar

Jiang, L.-T., Huang, T.-C., Chiu, C.-R., Chang, C.-Y. and Yang, S.-Y., “Fabrication of Plastic Microlens Arrays Using Hybrid Extrusion Rolling Embossing with a Metallic Cylinder Mold Fabricated Using Dry Film Resist”, Opt. Express, 15, 1208812094 (2007) PMid:19547573; 10.1364/OE.15.012088Search in Google Scholar PubMed

Jucius, D., Grigaliunas, V., Mikolajunas, M., Guobiene, A., Kopustinskas, V., Gudonyte, A. and Narmontas, P., “Hot Embossing of PTFE: Towards Superhydrophobic Surfaces”, Appl. Surf. Sci., 257, 23532360 (2011) 10.1016/j.apsusc.2010.09.102Search in Google Scholar

Kodihalli Shivaprakash, N., Zhang, J., Panwar, A., Barry, C., Truong, Q. and Mead, J., “Continuous Manufacturing of Reentrant Structures via Roll-to-Roll Process”, J. Appl. Polym. Sci., 136, 46980 (2019) 10.1002/app.46980Search in Google Scholar

Kota, A. K., Kwon, G., Choi, W., Mabry, J. M. and Tuteja, A., “Hygro-Responsive Membranes for Effective Oil–Water Separation”, Nat. Commun., 3, 1025 (2012) PMid:22929782; 10.1038/2027Search in Google Scholar

Lee, S. E., Lee, K. W., Kim, J. H., Lee, K. C., Lee, S. S. and Hong, S., “Mass-Producible Superhydrophobic Surfaces”, Chem. Commun., 47, 1200512007 (2011) PMid:21959376; 10.1039/C1CC14489HSearch in Google Scholar

Lee, Y., Park, S.-H., Kim, K.-B. and Lee, J.-K., “Fabrication of Hierarchical Structures on a Polymer Surface to Mimic Natural Superhydrophobic Surfaces”, Adv. Mater., 19, 23302335 (2007) 10.1002/adma.200700820Search in Google Scholar

Leitgeb, M., Nees, D., Ruttloff, S., Palfinger, U., Gotz, J., Liska, R., Belegratis, M. R. and Stadlober, B., “Multilength Scale Patterning of Functional Layers by Roll-to-Roll Ultraviolet-Light-Assisted Nanoimprint Lithography”, ACS Nano, 10, 49264941 (2016) PMid:27023664; 10.1021/acsnano.5b07411Search in Google Scholar PubMed

Li, Y., John, J., Kolewe, K. W., Schiffman, J. D. and Carter, K. R., “Scaling Up Nature: Large Area Flexible Biomimetic Surfaces”, ACS Appl. Mater. Interfaces, 7, 2343923444 (2015) PMid:26423494; 10.1021/acsami.5b04957Search in Google Scholar PubMed PubMed Central

Ma, M., Hill, R. M., “Superhydrophobic Surfaces”, Curr. Opin. Colloid Interface Sci., 11, 193202 (2006) 10.1016/j.cocis.2006.06.002Search in Google Scholar

Mäkelä, T., Haatainen, T. and Ahopelto, J., “Roll-to-Roll Printed Gratings in Cellulose Acetate Web Using Novel Nanoimprinting Device”, Microelectron. Eng., 88, 20452047 (2011) 10.1016/j.mee.2011.02.016Search in Google Scholar

Nakajima, A., Hashimoto, K. and Watanabe, T., “Chapter 3 Recent Studies on Super-Hydrophobic Films”, in Molecular Materials and Functional Polymers, Blau, W. J., Lianos, P., Schubert, U. (Eds.) Springer, Vienna, p. 3141 (2001) 10.1007/978-3-7091-6276-7_3Search in Google Scholar

Patankar, N. A., “On the Modeling of Hydrophobic Contact Angles on Rough Surfaces”, Langmuir, 19, 12491253 (2003) 10.1021/la026612+Search in Google Scholar

Shan, X., Soh, Y. C., Jin, L. and Lu, C. W., “Large Area Micro Roller Embossing Using Low Cost Flexible Mould Fabricated from Polymer-Metal Film”, Symposium on Design Test Integration and Packaging of MEMS/MOEMS (DTIP), p. 316319 (2010)Search in Google Scholar

Telecka, A., Murthy, S., Schneider, L., Pranov, H. and Taboryski, R., “Superhydrophobic Properties of Nanotextured Polypropylene Foils Fabricated by Roll-to-Roll Extrusion Coating”, ACS Macro Lett., 5, 10341038 (2016) 10.1021/acsmacrolett.6b00550Search in Google Scholar

Toosi, S. F., Moradi, S., Ebrahimi, M. and Hatzikiriakos, S. G., “Microfabrication of Polymeric Surfaces with Extreme Wettability Using Hot Embossing”, Appl. Surf. Sci., 378, 426434 (2016) 10.1016/j.apsusc.2016.03.116Search in Google Scholar

Tsai, S.-W., Lee, Y.-C., “Fabrication of Ball-Strip Convex Microlens Array Using Seamless Roller Mold Patterned by Curved Surface Lithography Technique”, J. Micromech. Microeng., 24, 015014 (2013) 10.1088/0960-1317/24/1/015014Search in Google Scholar

Velten, T., Bauerfeld, F., Schuck, H., Scherbaum, S., Landesberger, C. and Bock, K., “Roll-to-Roll Hot Embossing of Microstructures”, Microsyst. Technol., 17, 619627 (2011) 10.1007/s00542-010-1158-xSearch in Google Scholar

Wang, J., Liu, F., Chen, H. and Chen, D., “Superhydrophobic Behavior Achieved from Hydrophilic Surfaces”, Appl. Phys. Lett., 95, 084104 (2009) 10.1063/1.3212869Search in Google Scholar

Wenzel, R. N., “Resistance of Solid Surfaces to Wetting by Water”, Ind. Eng. Chem., 28, 988994 (1936) 10.1021/ie50320a024Search in Google Scholar

Xue, C.-H., Jia, S.-T., Zhang, J. and Ma, J.-Z., “Large-Area Fabrication of Superhydrophobic Surfaces for Practical Applications: An Overview”, Sci. Technol. Adv. Mater., 11, 033002 (2010) PMid:27877336; 10.1088/1468-6996/11/3/033002Search in Google Scholar PubMed PubMed Central

Yeo, L. P., Ng, S. H., Wang, Z., Wang, Z. and de Rooij, N. F., “Micro-Fabrication of Polymeric Devices Using Hot Roller Embossing”, Microelectron. Eng., 86, 933936 (2009) 10.1016/j.mee.2008.12.021Search in Google Scholar

Yeo, L., Ng, S. H., Wang, Z. F., Xia, H. M., Wang, Z. P., Thang, V. S., Zhong, Z. W. and de Rooij, N. F., “Investigation of Hot Roller Embossing for Microfluidic Devices”, J. Micromech. Microeng., 20, 015017 (2009) 10.1088/0960-1317/20/1/015017Search in Google Scholar

Zhang, H., Lamb, R. and Lewis, J., “Engineering Nanoscale Roughness on Hydrophobic Surface – Preliminary Assessment of Fouling Behaviour”, Sci. Technol. Adv. Mater., 6, 236239 (2005) 10.1016/j.stam.2005.03.003Search in Google Scholar

Received: 2019-03-15
Accepted: 2019-05-19
Published Online: 2019-11-01
Published in Print: 2019-11-21

© 2019, Carl Hanser Verlag, Munich

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 7.6.2024 from https://www.degruyter.com/document/doi/10.3139/217.3815/html
Scroll to top button