Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 17, 2018

Monitoring of Injection Molding Tool Corrosion and Effects of Wood Plastic Compound's Moisture on Material Properties

  • E. Steidl , L. Sobczak and C. Pretschuh

Abstract

Before injection molding, wood polymer composites (WPC) normally have to be dried to achieve optimal quality of the injected parts as well as to avoid corrosion of the mold. Based on a literature study, there are currently no published investigations dealing with the dependency of WPC properties on the initial moisture content of the compound's pellets. Further, it is known that water and wood in combination with high temperatures can lead to corrosion of steel parts, but a systematic analysis of the impact of WPC injection molding on tool corrosion has not been found in the literature. For the present study, a compound with 68 wt% (weight percent) polypropylene, 30 wt% wood flour and 2 wt% coupling agent was produced and tested in injection molding trials. Specimens according to ISO 527-2 were produced from WPC with defined moisture contents, respectively. Compound moisture, already at very low contents, had significant negative effects on the tested mechanical properties, namely tensile modulus and strength, unnotched and notched Charpy impact strength and heat deflection temperature. Corrosion trials were performed for different tool steel qualities. The severity of corrosion correlates with the amount of chromium (Cr) in the alloys tested.


*Correspondence address, Mail address: Elisabeth Steidl, Competence Centre for Wood Composites and Wood Chemistry, Division Wood-Polymer-Composites, Altenberger Straße 69, 4040 Linz, Austria, E-mail:

References

Ahmad, F., Choi, H. S. and Park, M. K., “A Review – Natural Fiber Composites Selection in View of Mechanical, Light Weight, and Economic Properties”, Macromol. Mater. Eng., 1, 1024 (2015) 10.1002/mame.201400089Search in Google Scholar

Ahmad, Z.: Principles of Corrosion Engineering and Corrosion Control, 1st Edition, Elsevier/BH, Boston, p. 482 (2006)10.1016/B978-075065924-6/50002-7Search in Google Scholar

Barcik, S., Gasparík, M. and Razumov, E. Y., “Effect of Temperature on the Color Changes of Wood during Thermal Modification”, Cellul. Chem. Technol., 49, 789798 (2015)Search in Google Scholar

Beg, M. D. H., Pickering, K. L., “Mechanical Performance of Kraft Fibre Reinforced Polypropylene Composites: Influence of Fibre Length, Fibre Beating and Hygrothermal Ageing”, Composites Part A, 39, 17481755 (2008) 10.1016/j.compositesa.2008.08.003Search in Google Scholar

Błędzki, A. K., Jaszkiewicz, A., Murr, M., Sperber, V. E. and Lützendorf, R., “Chapter 4 Processing Techniques for Natural- and Wood-Fibre Composites”, in Properties and Performance of Natural-Fibre Composites, Pickering, K. L. (Ed.), CRC Press/Woodhead, Cambridge, p. 164168 (2008)10.1533/9781845694593.1.163Search in Google Scholar

Boniardi, M., Casaroli, A.: Rostfreie Edelstähle, 1st Edition, Lucefin, Esine, p. 518, p. 96 (2014)Search in Google Scholar

Borrega, M., Kärenlampi, P. P., “Effect of Relative Humidity on Thermal Degradation of Norway Spruce (Picea Abies) Wood”, J. Wood Sci., 54, 323328 (2008) 10.1007/s10086-008-0953-9Search in Google Scholar

Cantero, G., Arbelaiz, A., Mugika, F., Valea, A. and Mondragon, I., “Mechanical Behavior of Wood/Polypropylene Composites: Effects of Fibre Treatments and Ageing Processes”, J. Reinf. Plast. Comp., 22, 3750 (2003) 10.1177/0731684403022001495Search in Google Scholar

Davis, J. R. (Ed.): ASM Specialty Handbook – Stainless Steels, 2nd Edition, ASM International, Ohio, p. 3 (1994)Search in Google Scholar

Dix, B., Salthammer, T., “Emissionen von organischen Verbindungen aus naturfaserverstärkten Composites”, Conference Paper, Fraunhofer IWM, Naturfaserstoff gefüllte Komposite und Bauteile – Perspektiven und Erfahrungen: Workshop, Halle (2004)Search in Google Scholar

Eder, A., Haider, A., “Marktchancen für Wood Polymer Composites im deutschsprachigen Raum“, Holztechnologie, 52, 4449 (2011)Search in Google Scholar

Farsi, M., “Wood-plastic Composites: Influence of Wood Flour Chemical Modification on the Mechanical Performance”, J. Reinf. Plast. Compos., 29, 35873592 (2010) 10.1177/0731684410378779Search in Google Scholar

Garrote, G., Domínguez, H. and Parajó, J. C., “Hydrothermal Processing of Lignocellulosic Materials”, Holz Roh Werkst., 57, 191202 (1999) 10.1007/s001070050039Search in Google Scholar

Gurunathan, T., Mohanty, S. and Nayak, S. K., “A Review of the Recent Developments in Biocomposites Based on Natural Fibres and their Application Perspectives”, Composites Part A, 77, 125 (2015) 10.1016/j.compositesa.2015.06.007Search in Google Scholar

Kollmann, F., Fengel, D., “Änderungen der chemischen Zusammensetzung von Holz durch thermische Behandlung“, Holz Roh Werkst., 23, 461468 (1965) 10.1007/BF02627217Search in Google Scholar

Reardon, A. C. (Ed.): Metallurgy for the Non-Metallurgist, ASM International, Ohio, p. 7 (2011)10.31399/asm.tb.mnm2.9781627082617Search in Google Scholar

Sandermann, W., Augustin, H., “Chemische Untersuchungen über die thermische Zersetzung von Holz – Zweite Mitteilung: Untersuchungen mit Hilfe der Differential-Thermo-Analyse”, Holz Roh Werkst., 21, 305315 (1963) 10.1007/BF02610964Search in Google Scholar

Scheirs, J., Camino, G. and Tumiatti, W., “Overview of Water Evolution during the Thermal Degradation of Cellulose”, Eur. Polym. J., 37, 933942, (2001) 10.1016/S0014-3057(00)00211-1Search in Google Scholar

Sobczak, L., Lang, R. W. and Haider, A., “Polypropylene Composites with Natural Fibers and Wood – General Mechanical Property Profiles”, Compos. Sci. Technol., 72, 550557 (2012a) 10.1016/j.compscitech.2011.12.013Search in Google Scholar

Sobczak, L., Lang, R. W., Reif, M. and Haider, A., “Polypropylene-Based Wood Polymer Composites–Effect of a Maleated Polypropylene Coupling Agent under Dry and Wet Conditions”, J. Appl. Polym. Sci., 129, 36873695 (2012b) 10.1002/app.39066ViewSearch in Google Scholar

Sobczak, L., Brüggemann, O. and Putz, R. F., “Polyolefin Composites with Natural Fibers and Wood – Modification of the Fiber/Filler-Matrix Interaction”, J. Appl. Polym. Sci., 127, 117, (2013) 10.1002/app.36935Search in Google Scholar

Sundqvist, B., Karlsson, O. and Westermark, U., “Determination of Formic-Acid and Acetic Acid Concentrations Formed during Hydrothermal Treatment of Birch Wood and its Relation to Colour, Strength and Hardness”, Wood Sci. Technol., 40, 549561 (2006) 10.1007/s00226-006-0071-zSearch in Google Scholar

Svoboda, M. A.: “Werkstoffe aus nachwachsenden Rohstoffen“, PhD Thesis, Institut für Werkstoffkunde und Prüfung der Kunststoffe, Montanuniversität Leoben, Leoben, p. 106112 (2003)Search in Google Scholar

Taib, R., Ishak, Z. A., Rozman, H. D. and Glasser, W. G., “Effect of Moisture Absorption on the Tensile Properties of Steam-exploded Acacia mangium Fiber/Polypropylene Composites”, J. Thermoplast. Compos. Mater., 19, 475489 (2006) 10.1177/0892705706062208Search in Google Scholar

Thakur, V. K., Thakur, M. K., “Processing and Characterization of Natural Cellulose Fibers/Thermoset Polymer Composites”, Carbohydr. Polym., 109, 102117 (2014) 24815407 10.1016/j.carbpol.2014.03.039Search in Google Scholar PubMed

Tranninger, M., Gahleitner, M., Gubo, R., Haider, A. and Sobczak, L., “Low Weight and Sustainability for Vehicles”, Kunststoffe International, 11, 5153 (2014)Search in Google Scholar

Umney, N., “Corrosion of Metals Associated with Wood”, V&A Conservation Journal, 4, 912 (1992)Search in Google Scholar

Weißbach, W. “Überlegungen zur Werkstoffwahl“, in Werkstoffkunde, Weißbach, W. (Ed.), Vieweg+Teubner, Wiesbaden, p. 356364 (2012) 10.1007/978-3-8348-8318-6_14Search in Google Scholar

Wienhaus, O., “Modifizierung des Holzes durch eine milde Pyrolyse – abgeleitet aus den allgemeinen Prinzipien der Thermolyse des Holzes“, Roh- und Werkstoff Holz, Scientific Magazine Technical University Dresden, 48, 1722 (1999)Search in Google Scholar

Received: 2016-11-08
Accepted: 2017-06-11
Published Online: 2018-04-17
Published in Print: 2018-03-02

© 2018, Carl Hanser Verlag, Munich

Downloaded on 3.6.2024 from https://www.degruyter.com/document/doi/10.3139/217.3382/html
Scroll to top button