Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 16, 2022

Experimental Research on Properties of Naval Brass Castings

Experimentelle Untersuchungen der Eigenschaften von seewasserfesten Messinggussteilen
  • M. Türker

    Mehmet Türker was born in 1974 and studied Welding Technologies, Manufacturing, Materials Science, and Casting Technologies. He is Assistant Professor at the Turkish Naval Academy in Istanbul, Turkey, and works currently as a Guest Researcher at the ISF-Institut für Schweißtechnik und Fügetechnik at RWTH Aachen, Germany.

    , Z. Yasar Comert

    Zekeriya Yasar Comert was born in 1977 and studied Materials Science, Casting Technologies and Powder Metallurgy at Yıldız Technical University in Istanbul, Turkey.

    , A. Kisasoz and K. Altug Guler
From the journal Practical Metallography

Abstract

Naval brasses consisting of the α–β duplex phases are a special kind of Cu-Zn alloys. They are known to have excellent corrosion resistance to sea water and marine conditions. The aim of this study is the investigation of properties and behaviours of naval brass parts formed by different casting processes. A medium leaded naval brass alloy with 60 % Cu, 39 % Zn and 1 % Pb approximate composition was used. Several samples were subjected to mechanical testing by means of tensile and hardness tests. Light optical microscopy with image analyser and scanning electron microscopy were used for microstructure observations. The corrosion test was applied in sea water conditions. Results reveal that besides hot forging also casting is a very suitable technique for naval brass shaping. Casting does not have a negative effect on the most important property corrosion resistance. Furthermore, the obtained mechanical properties are satisfactory.

Kurzfassung

Seewasserfeste Messinge, die aus den α–β-Duplexphasen bestehen, sind eine besondere Art von Cu-Zn-Legierung. Sie besitzen bekanntermaßen eine hervorragende Korrosionsbeständigkeit gegen Meerwasser und marine Bedingungen. Dieser Beitrag dient der Untersuchung der Eigenschaften und Verhaltensweisen von durch verschiedene Gussverfahren hergestellten seewasserfesten Messingteilen. Es wurde eine durchschnittlich verbleite, seewasserfeste Messinglegierung mit einer ungefähren Zusammensetzung von 60 % Cu, 39 % Zn und 1 % Pb verwendet. Mehrere Proben wurden mittels Zugversuchen und Härtetests mechanisch geprüft. Für die mikrostrukturellen Beobachtungen wurden ein Lichtmikroskop mit Image Analyser und ein Rasterelektronenmikroskop verwendet.

Die Korrosionsprüfung fand unter Meerwasserbedingungen statt. Die Ergebnisse zeigen, dass neben dem Warmschmieden auch das Gießen ein geeignetes Verfahren für das Formen von seewasserfestem Messing ist. Das Gießen hat keine negativen Auswirkungen auf die wichtigste Eigenschaft, die Korrosionsbeständigkeit. Außerdem sind die erzielten mechanischen Eigenschaften zufriedenstellend.


Übersetzung: Marc Lackas


About the authors

M. Türker

Mehmet Türker was born in 1974 and studied Welding Technologies, Manufacturing, Materials Science, and Casting Technologies. He is Assistant Professor at the Turkish Naval Academy in Istanbul, Turkey, and works currently as a Guest Researcher at the ISF-Institut für Schweißtechnik und Fügetechnik at RWTH Aachen, Germany.

Z. Yasar Comert

Zekeriya Yasar Comert was born in 1977 and studied Materials Science, Casting Technologies and Powder Metallurgy at Yıldız Technical University in Istanbul, Turkey.

References / Literatur

[1] Russell, A. M.; Lee, K. L.: Structure-Property Relations in Nonferrous Metals, John Wiley & Sons, USA, 2005, 310 DOI: 10.1002/047170854210.1002/0471708542Search in Google Scholar

[2] Xing, B.; He, X.; Wang, Y.; Yang, H.; Deng, C.: Journal of Materials Processing Technology 216 (2015), 28–36 DOI: 10.1016/j.jmatprotec.2014.08.03010.1016/j.jmatprotec.2014.08.030Search in Google Scholar

[3] Zhang, X.; Wallinder, I. O.; Leygraf, C.: Corrosion Science 85 (2014), 15–25 10.1016/j.corsci.2014.03.02810.1016/j.corsci.2014.03.028Search in Google Scholar

[4] Maa, Y.; Qiu, K.: Vacuum 106 (2014), 5–10 DOI: 10.1016/j.vacuum.2014.02.01610.1016/j.vacuum.2014.02.016Search in Google Scholar

[5] A Guide to Working with Copper and Copper Alloys, Copper Development Association, New York, USA, 2015, 4Search in Google Scholar

[6] Farabi, E.; Zarei-Hanzaki, A.; Abedi, H. R.: Journal of Materials Engineering and Performance 24 (2015), 209–220 DOI: 10.1007/s11665-014-1254-710.1007/s11665-014-1254-7Search in Google Scholar

[7] Zhu, A.; Chen, J.; Li, Z.; Luo, L.; Lei, Q.; Zhang, L.; Zhang, W.: Trans. Nonferrous Met. Soc. China 23 (2013), 1349–1355 DOI: 10.1016/S1003-6326(13)62603-510.1016/S1003-6326(13)62603-5Search in Google Scholar

[8] Kumar, S.; Narayanan, T. S. N. S.; Manimaran, A.; Kumar, M. S.: Materials Chemistry and Physics 106 (2007), 134–141 DOI: 10.1016/j.matchemphys.2007.05.03010.1016/j.matchemphys.2007.05.030Search in Google Scholar

[9] Atsumi, H.; Imai, H.; Li, S.; Kondoh, K.; Kousaka, Y.; Kojima, A.: Materials Science and Engineering A 529 (2011), 275–281 DOI: 10.1016/j.msea.2011.09.02910.1016/j.msea.2011.09.029Search in Google Scholar

[10] Panagopoulos, C. N.; Georgiou, E. P.; Simeonidis, K.: Tribology International 50 (2012), 1–5 DOI: 10.1016/j.triboint.2011.12.01610.1016/j.triboint.2011.12.016Search in Google Scholar

[11] Suárez, L.; Calvillo, P. R.; Cabrera, J. M.; Romay, A. M.; Mallorquín, D. M.; Coma, A.: Materials Science and Engineering A 627 (2015), 42–50 DOI: 10.1016/j.msea.2014.12.09310.1016/j.msea.2014.12.093Search in Google Scholar

[12] Sohn, S.; Kang, T.: Journal of Alloys and Compounds 335 (2002), 281–289 DOI: 10.1016/S0925-8388(01)01839-410.1016/S0925-8388(01)01839-4Search in Google Scholar

[13] Troiani, H. E.; Baruj, A.: Materials Science and Engineering A 454–455 (2007), 441–44510.1016/j.msea.2006.11.092Search in Google Scholar

[14] Tyler, D. E.; Black, W. T.: Introduction to Copper and Copper Alloys, ASM Handbook Vol. 2, ASM International, Ohio, USA, 1997, 1078–1079Search in Google Scholar

[15] Tyler, D. E.; Black, W. T.: Introduction to Copper and Copper Alloys, ASM Handbook Vol. 2, ASM International, Ohio, USA, 1997, 765Search in Google Scholar

Received: 2015-05-26
Accepted: 2015-08-08
Published Online: 2022-02-16

© 2016 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.3139/147.110362/html
Scroll to top button