Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 10, 2018

Dry sliding wear behavior of aluminum graphene nanoplatelet (GNP) composites

Trockenverschleißverhalten von Aluminium-Kompositen mit Graphen-Nanoplättchen (GNP)
  • Ilyas Istif and Mehmet Tunc Tuncel
From the journal Materials Testing

Abstract

Conventional aluminum (Al) and its alloys have been replaced by aluminum matrix composites (AMCs) due to their superior properties in the recent years. There are several attractive candidates as reinforcement for aluminum composites such as Al2O3, B4C and SiC. Nowadays, carbon based materials such as graphite, carbon nanotubes (CNTs) and graphene have attracted much attention owing to their above mentioned mechanical and physical properties. In this study, the wear behavior of Al graphene nanoplatelets (GNPs) composites reinforced with up to 2 wt.-% GNP were investigated. The addition of graphene up to 1 wt.-% decreased coefficient of friction. Experimental data were used to develop linear and nonlinear models. The experimental results are in good agreement with the results of the simulations based on the identified models.

Kurzfassung

Konventionelles Aluminium (Al) und seine Legierungen wurden in den letzten Jahren durch Aluminiummatrix-Komposite (AMC) aufgrund ihrer hervorragenden Eigenschaften ersetzt. Für die Verstärkung der Aluminium-Komposite existieren verschiedene attraktive Komponenten, wie beispielsweise Al2O3, B4C und SiC. Heute gewinnen kohlenstoffbasierte Materialien, wie beispielsweise Graphit, Carbon-Nanoröhrchen und Graphen eine hohe Beachtung wegen der oben erwähnten mechanischen und physikalischen Eigenschaften. In der diesem Beitrag zugrunde liegenden Studie wurde das Verschleißverhalten von Al-GNP Kompositen untersucht, die mit bis zu 2 wt.-% GNP verstärkt wurden. Die Zugabe von bis zu 1 wt.-% GNP verringerte den Reibkoeffizient. Die experimentellen Ergebnisse wurden verwendet, um lineare und nichtlineare Modelle zu entwickeln. Die experimentellen Ergebnisse sind in guter Übereinstimmung mit den Resultaten der Simulationen, die basierend auf den identifizierten Modellen durchgeführt wurden.


*Correspondence Address, Assistant Prof. Dr. Ilyas Istif, Mechanical Engineering Faculty, Yildiz Technical University, 34349 Besiktas, Istanbul, Turkey, E-mail:

Assistant Prof. Dr. Ilyas Istif, born in 1969, obtained his BSc degree from Yildiz Technical University, Istanbul, Turkey, in 1990. He completed his MSc and PhD degrees at Istanbul Technical University, Turkey in 1995 and 2003, respectively. Currently, he is working at Yildiz Technical University, Mechanical Engineering Faculty, as Assistant Professor. His main research areas include wear tests, modeling, identification and control of industrial hydraulic systems.

Mehmet Tunc Tuncel, born in 1968, obtained his BSc degree from Yildiz Technical University, Istanbul, Turkey in 1989. He completed his MSc degree at the same university in 1992. He is currently working on his PhD at Yildiz Technical University. Also, he is working for Bozlu Holding in Istanbul as a project manager in robotic medicament preparation R&D.


References

1 U.Abdullahi, M. A.Maleque, U.Nirmal: Wear mechanisms map of CNT-Al nano-composite, Procedia Engineering68 (2013), pp. 73674210.1016/j.proeng.2013.12.247Search in Google Scholar

2 M.Bastwros, G. Y.Kim, C.Zhu, K.Zhang, S.Wang, X.Tang, X.Wang: Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering, Composites Part B60 (2014), pp. 11111810.1016/j.compositesb.2013.12.043Search in Google Scholar

3 M.Rashad, F.Pan, ATang, M.Asif, S.Hussain, J.Gou, J.Mao: Improved strength and ductility of magnesium with addition of aluminum and graphene nanoplatelets, Journal of Industrial and Engineering Chemistry23 (2015), pp. 24325010.1016/j.jiec.2014.08.024Search in Google Scholar

4 D. K.Lim, T.Shibayanagi, A. P.Gerlich: Synthesis of multi-walled CNT reinforced aluminium alloy composite, Materials Science and Engineering A507 (2009), pp. 19419910.1016/j.msea.2008.11.067Search in Google Scholar

5 D. K.Perez-Bustamante, C. D.Gomez-Esparza, I.Estrada-Guel, M.Miki-Yoshida, L.Licea-Jimenez, S. A.Perez-Garcia, R.Martinez-Sanchez: Microstructural and mechanical characterization of Al-MWCNT composites produced by mechanical milling, Materials Science and Engineering A502 (2009), No. 1–2, pp. 15916310.1016/j.msea.2008.10.047Search in Google Scholar

6 Y.Shimizu, S.Miki, T.Soga, I.Itoh, H.Todoroki, T.Hosono, K.Sakaki, T.Hayashi, Y. A.Kim, M.Endo, S.Morimoto, A.Koide: Multi-walled carbon nanotube-reinforced magnesium alloy composites, Scripta Materialia58 (2008), pp. 26727010.1016/j.scriptamat.2007.10.014Search in Google Scholar

7 S. J.Yan, S. L.Dai, X. Y.Zhang, C.Yang, Q. H.Hong, J. Z.Chen, Z. M.Lin: Investigating aluminum alloy reinforced by graphene nanoflakes, Materials Science and Engineering A612 (2014), pp. 44044410.1016/j.msea.2014.06.077Search in Google Scholar

8 M.Rashad, F.Pan, A.Tang, M.Asif: Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method, Progress in Natural Science: Materials International24 (2014), pp. 10110810.1016/j.pnsc.2014.03.012Search in Google Scholar

9 W.Zhai, X.Shi, J.Yao, A. M. M.Ibrahim, Z.Xu, Q.Zhu, Y.Xiao, L.Chen, Q.Zhang: Investigation of mechanical and tribological behaviors of multilayer graphene reinforced Ni3Al matrix composites, Composites Part B70 (2015), pp. 14915510.1016/j.compositesb.2014.10.052Search in Google Scholar

10 C.Zhang, H.Zhang: Modelling and prediction of tool wear using LS-SVM in milling operation, International Journal of Computer Integrated Manufacturing29 (2016), pp. 769110.1080/0951192X.2014.1003408Search in Google Scholar

11 I.Istif, O.Isin, E.Uzunsoy, D.Uzunsoy: Non-linear modelling of PM brake lining wear behaviour, Materials Testing54 (2012), pp. 454810.3139/120.110295Search in Google Scholar

12 I.Istif, O.Isin, E.Uzunsoy, D.Uzunsoy: Linear model for PM brake lining material wear behaviour, Materials Testing52 (2010), pp. 79579910.3139/120.110192Search in Google Scholar

13 F. S.Rashed, T. S.Mahmoud: Prediction of wear behaviour of A356/SiCp MMCs using neural networks, Tribology International42 (2009), pp. 64264810.1016/j.triboint.2008.08.010Search in Google Scholar

14 C. S.Ramesh, A. R.Khan, N.Ravikumar, P.Savanprabhu: Prediction of wear coefficient of Al6061-TiO2 composites, Wear259 (2005), pp. 60260810.1016/j.wear.2005.02.115Search in Google Scholar

15 D.Aleksendric: Neural network prediction of brake friction materials wear, Wear268 (2010), pp. 11712510.1016/j.wear.2009.07.006Search in Google Scholar

16 I.Istif, O.Isin, D.Uzunsoy, T.Peng, I.Chang: Prediction of wear behavior of aluminum alloy reinforced with carbon nanotubes using nonlinear identification, SAE Technical Paper 2014-01-0947 (2014) 10.4271/2014-01-0947Search in Google Scholar

Published Online: 2018-10-10
Published in Print: 2016-07-15

© 2016, Carl Hanser Verlag, München

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.3139/120.110895/html
Scroll to top button