Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 26, 2013

Effect of Casting Method of AZ91 D Magnesium Alloy on the Degradation Behaviour in Simulated Body Fluid

Einfluß des Gießverfahrens der Magnesiumlegierung AZ91D auf das Degradationsverhalten in simulierter Körperflüssigkeit
  • Cem Akca
From the journal Materials Testing

Abstract

Magnesium-based alloys as biodegradable orthopedic implants have been successful for their high degradation rates in the physiological environment and the consequent loss in the mechanical integrity. Casting method used in production of magnesium-based alloys influences the microstructure of implants due to cooling conditions. In this study, the effects of casting method (permanent mold casting and sand mold casting) on the degradation of AZ91D magnesium alloy in Hank's simulated body fluid at 36.5 ± 0.5°C have been investigated using immersion technique of cylindrical specimens. The specimens were subjected to simulated body fluid for 8 h and 24 h. The results have shown that the cooling rate from melt and grain size have great influence on the degradation rate of magnesium alloy.

Kurzfassung

Magnesiumlegierungen haben sich als erfolgreich bei der Verwendung als bio-degradierbare orthopädische Implantate aufgrund ihrer hohen Deradationsraten in physiologischen Umgebungen und ihrer damit verbundenen mechanischen Integrität erwiesen. Das Gießverfahren während der Produktion von Magnesiumlegierungen beeinflußt die Mikrostruktur solcher Implantate in Abhängigkeit von den jeweiligen Abkühlungsbedingungen. In der diesemBeitrag zugrunde liegenden Studie wurden die Einflüsse des Gießverfahrens (Kokillenguß und Sandguß) auf das Degradationsverhalten der Magensiumlegierung AZ91D in Hank's simulierter Körperflüssigkeit bei 36,5 ± 0.5°C mittels Tauchversuchen von zylindrischen Proben untersucht. Die Proben wurden der simulierten Körperflüssigkeit über 8 und 24 Stunden ausgesetzt. Die Ergebnisse haben gezeigt, dass die Abkühlrate der Schmelze und die Korngröße sich erheblich auf auf die Degradationsrate der Magnesiumlegierung auswirkt.


Dr. Akca was born in Istanbul (1978), Turkey. He received BS, MS, and PhD degrees in Metallurgical and Materials Engineering from Yildiz Technical University, Istanbul, Turkey in 1999, 2002, and 2006, respectively. He worked on strain-induced phase transformation in austempered ductile iron during his MS and PhD studies. Currently, he is occupied in the Dept. of Metallurgical and Materials Engineering (Materials Science and Engineering Division) and is working at the Balkan Center for Advanced Casting Technologies as a member of the advisory board.


References

1 Y.Song, D.Shan, R.Chen, F.Zhang, E.Han: Biodegradable behaviors of AZ31 magnesium alloy in simulated body fluid, Materials Science and Engineering C29 (2009), pp. 1039104510.1016/j.msec.2008.08.026Search in Google Scholar

2 M.P.Staiger, A.M.Pietak, J.Huadmai, G.Dias: Magnesium and its alloys as orthopedic biomaterials: A review, Biomaterials27 (2006), No. 9, pp. 1728173410.1016/j.biomaterials.2005.10.003Search in Google Scholar

3 F.Witte, V.Kaese, H.Haferkamp, E.Switzer: In vivo corrosion of four magnesium alloys and the associated bone response, Biomaterials26 (2005), No. 17, pp. 3557356310.1016/j.biomaterials.2004.09.049Search in Google Scholar

4 G.Song: Control of biodegradation of biocompatible magnesium alloys, Corrosion Science49 (2007), No. 4, pp. 1696170110.1016/j.corsci.2007.01.001Search in Google Scholar

5 F. I.Wolf, A.Cittadini: Chemistry and biochemistry of magnesium, Molecular Aspects of Medicine24 (2003), No. 2003-1, pp. 3910.1016/S0098-2997(02)00087-0Search in Google Scholar

6 J. F.King: Magnesium: commodity or exotic?, Materials Science and Technology23 (2007), No. 1, pp. 11410.1179/174328407X154374Search in Google Scholar

7 Brown, R. E., 2000, Improved magnesium casting method: Light Metal Age, vol. 58, no. 7–8, page 64.Search in Google Scholar

8 G.Song G, A.Atrens, M.Dargusch: Influence of microstructure on the corrosion of die cast AZ91D alloy, Corrosion Science41 (1998), No. 2, pp. 24927310.1016/S0010-938X(98)00121-8Search in Google Scholar

9 N. N.: ASM International Heat Treater's Guide: Practices and Procedures for Nonferrous Alloys, Materials Park, OH, USA (1996)Search in Google Scholar

10 S.Mathieu, C.Rapin, J.Hazan, P.Steinmetz: Corrosion behavior of high pressure die-cast and semi-solid cast AZ91D alloys, Corrosion Science44 (2002), pp. 2737275610.1016/S0010-938X(02)00075-6Search in Google Scholar

11 R.Ambat, N. N.Aung, W.Zhou: Evaluation of microstructural effects on corrosion behavior of AZ91D magnesium alloy, Corrosion Science42 (2000), pp. 143345510.1016/S0010-938X(99)00143-2Search in Google Scholar

12 T.Kokubo, H.Takadama: How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials27 (2006), pp. 2907291510.1016/j.biomaterials.2006.01.017Search in Google Scholar PubMed

13 I.Gurappa: Characterization of different materials for corrosion resistance under simulated body fluid conditions, Materials Characterization49 (2002), pp. 737910.1016/S1044-5803(02)00320-0Search in Google Scholar

14 W.Zhou, T.Shen, N.N.Aung: Effect of heat treatment on corrosion behavior of magnesium alloy AZ91D in simulated body fluid, Corrosion Science52 (2010), pp. 1035104110.1016/j.corsci.2009.11.030Search in Google Scholar

Published Online: 2013-05-26
Published in Print: 2011-09-01

© 2011, Carl Hanser Verlag, München

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.3139/120.110259/html
Scroll to top button