Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 4, 2018

Strategies for the Heat Treatment of Steel-Aluminium Hybrid Components

Strategien zur Wärmebehandlung von Stahl-Aluminium-Hybridbauteilen
  • S. Herbst , H. J. Maier and F. Nürnberger

Abstract

The production of massive steel-aluminium hybrid components by means of massive (hot) forming following a joining operation requires advanced heat treatment strategies for the adjustment of local material properties with maximum joint strengths. For the given process-step sequence, the challenge is that the heat treatment of the hybrid component can only take place in the joined state and after (hot) forming. Consequently, suitable heat treatment strategies must enable both a T6 heat treatment of the aluminium component and a surface hardening of the steel component. It could be shown that the inductive surface hardening of a steel functional surface in the immediate vicinity of the aluminium component can take place without reducing the bond strength. To achieve the desired hardening result, the use of a field former is required. The bond strength could be increased by up to 20% compared to the friction-welded initial conditions by adjusting the parameters of the T6 heat treatment.

Kurzfassung

Die Fertigung von massiven Stahl-Aluminium-Hybridbauteilen mittels einer auf eine Fügeoperation folgenden (Warm-)Massivumformung erfordert besondere Wärmebehandlungsstrategien zur Einstellung lokaler Werkstoffeigenschaften bei höchsten Verbindungsfestigkeiten. Herausfordernd ist, dass die Wärmebehandlung des hybriden Bauteils aufgrund der Prozessschrittabfolge erst im gefügten Zustand nach der (Warm-)Umformung erfolgen kann. Geeignete Wärmebehandlungsstrategien müssen dementsprechend sowohl eine durchgreifende T6-Wärmebehandlung der Aluminiumkomponente als auch eine Randschichthärtung der Stahlkomponente ermöglichen. Es konnte gezeigt werden, dass das induktive Randschichthärten einer Stahlfunktionsfläche in unmittelbarer Nähe zur Aluminiumkomponente ohne Reduzierung der Verbundfestigkeit erfolgen kann. Zur Erzeugung des gewünschten Härteergebnisses ist der Einsatz eines Feldformers erforderlich. Die Verbundfestigkeit konnte gegenüber reibgeschweißten Ausgangszuständen durch eine Anpassung der Parameter der T6-Wärmebehandlung um bis zu 20% gesteigert werden.


3 (Corresponding author/Kontakt)

References

1. Behrens, B.-A.; Bouguecha, A.; Vucetic, M.; Peshekhodov, I.; Matthias, T.; Kolbasnikov, N.; Sokolov, S.; Ganin, S.: Experimental investigations on the state of the friction-welded joint zone in steel hybrid components after process-relevant thermo-mechanical loadings. Proc. 19th Int. ESAFORM Conf. on Material Forming, 27–29.04.16, Nantes, France, Chinesta, F.; Cueto, E.; Abisset-Chavanne, E. (Eds.). AIP Publ., Melville, N. Y., USA, 2016, p. 13001310.1063/1.4963532Search in Google Scholar

2. Behrens, B.-A.; Bouguecha, A.; Frischkorn, C.; Huskic, A.; Chugreeva, A.: Process routes for die forging of hybrid bevel gears and bearing bushings. Proc. 20th Int. ESAFORM Conf. on Material Forming, AIP Conf. Proc.1896 (2017), p. 190014, 10.1063/1.5008227Search in Google Scholar

3. Behrens, B.-A.; Kosch, K.-G.: Production of Strong Steel-Aluminum Composites by Formation of Intermetallic Phases in Compound Forging. steel res. int.82 (2011), pp. 12611265, 10.1002/srin.201100055Search in Google Scholar

4. Groche, P.; Wohletz, S.; Brenneis, M.; Pabst, C.; Resch, F.: Joining by forming – A review on joint mechanisms, applications and future trends. J. Mater. Process. Technol.214 (2014), pp. 19721994, 10.1016/j.jmatprotec.2013.12.022Search in Google Scholar

5. Hordych, I.; Rodman, D.; Nürnberger, F.; Hoppe, C.; Schmidt, H. C.; Grundmeier, G.; Homberg, W.; Maier, H. J.: Effect of Pre-Rolling Heat Treatments on the Bond Strength of Cladded Galvanized Steels in a Cold Roll Bonding Process. steel res. Int.87 (2016), pp. 16191626, 10.1002/srin.201600021Search in Google Scholar

6. Fukumoto, S.; Tsubakino, H.; Okita, K.; Aritoshi, M.; Tomita, T.: Static joint strength of friction welded joint between aluminium alloys and stainless steel. Weld. Int.14 (2000), pp. 8993, 10.1080/09507110009549145Search in Google Scholar

7. Kawai, G.; Ogawa, K.; Ochi, H.; Tokisue, H.: Friction weldability of aluminium alloys to carbon steel. Weld. Int.14 (2000), pp. 101107, 10.1080/09507110009549147Search in Google Scholar

8. Zhang, Y.; Sun, D.: Microstructures and Mechanical Properties of Steel/Aluminum Alloy Joints Welded by Resistance Spot Welding. J. Mat. Eng. Perform.26 (2017), pp. 26492662, 10.1007/s11665-017-2731-6Search in Google Scholar

9. Herbst, S.; Dovletoglou, C. N.; Nürnberger, F.: Method for Semi-Automated Measurement and Statistical Evaluation of Iron Aluminum Intermetallic Compound Layer Thickness and Morphology. Metallography, Microstructure, and Analysis6 (2017), pp. 367374, 10.1007/s13632-017-0378-1Search in Google Scholar

10. Movahedi, M.; Kokabi, A. H.; Seyed Reihani, S. M.: Investigation on the bond strength of Al-1100/St-12 roll bonded sheets, optimization and characterization. Mater. Design32 (2011), pp. 31433149, 10.1016/j.matdes.2011.02.057Search in Google Scholar

11. Ochi, H.; Ogawa, K.; Yamamoto, Y.; Suga, Y.: Friction Welding of Aluminum Alloy and Steel. Int. J. Offsh. Polar Eng.8 (1998), pp. 140143Search in Google Scholar

12. Ikeuchi, K.; Takahashi, M.; Watanabe, H.; Aritoshi, M.: Effects of Carbon Content on Intermetallic Compound Layer and Joint Strength in Friction Welding of Al Alloy to Steel. Welding in the World53 (2009), R135–R139, 10.1007/BF03266718Search in Google Scholar

13. Springer, H.; Kostka, A.; dos Santos, J. F.; Raabe, D.: Influence of intermetallic phases and Kirkendall-porosity on the mechanical properties of joints between steel and aluminium alloys. Mat. Sci. Eng. A528 (2011), pp. 46304642, 10.1016/j.msea.2011.02.057Search in Google Scholar

14. Yamamoto, N.; Takahashi, M.; Aritoshi, M.; Ikeuchi, K.: Formation of Intermetallic Compounds in Friction Bonding of Al Alloys to Steel. Mater. Sci. Forum539–543 (2007), pp. 38653871, 10.4028/www.scientific.net/MSF.539-543.3865Search in Google Scholar

15. Yılmaz, M.; Çöl, M.; Acet, M.: Interface properties of aluminum/steel friction-welded components. Mater. Charac.49 (2002), pp. 421429, 10.1016/S1044-5803(03)00051-2Search in Google Scholar

16. Herbst, S.; Steinke, K. F.; Maier, H. J.; Milenin, A.; Nürnberger, F.: Determination of heat transfer coefficients for complex spray cooling arrangements. Int. J. Microstruc. Mat. Prop.11 (2016), pp. 229246, 10.1504/IJMMP.2016.079149Search in Google Scholar

17. Verein Deutscher Ingenieure: VDI-Wärmeatlas. Springer, Berlin, Heidelberg2013Search in Google Scholar

18. Rudajevová, A.; Buriánek, J.: Determination of thermal diffusivity and thermal conductivity of Fe-Al alloys in the concentration range 22 to 50 at.% Al. J. Phase Equil.22 (2001), pp. 560563, 10.1007/s11669-001-0075-1Search in Google Scholar

19. Payandeh, M.; Sjölander, E.; Jarfors, A. E. W.; Wessén, M.: Influence of microstructure and heat treatment on thermal conductivity of rheocast and liquid die cast Al-6Si-2Cu-Zn alloy. Int. J. Cast Met. Res.29 (2016), pp. 202213, 10.1080/13640461.2015.1125990Search in Google Scholar

20. Davis, J. R. (Ed.): Heat treating. Heat Treating (ASM Int.). Materials Park, Ohio: ASM International2007.Search in Google Scholar

Published Online: 2018-10-04
Published in Print: 2018-10-10

© 2018, Carl Hanser Verlag, München

Downloaded on 30.5.2024 from https://www.degruyter.com/document/doi/10.3139/105.110368/html
Scroll to top button