Skip to main content

Advertisement

Log in

Caspase-3 activation is required for reovirus-induced encephalitis in vivo

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Reovirus infection of neonatal mice provides a classic experimental system for understanding the molecular pathogenesis of central nervous system (CNS) viral infection. CNS tissue injury, caused by many human neurotropic viruses, including herpes viruses and West Nile virus, is associated with caspase-dependent apoptotic neuronal cell death. We have previously shown that reovirus-induced CNS tissue injury results from apoptosis and is associated with activation of both death-receptor and mitochondrial apoptotic pathways culminating in the activation of the downstream effector caspase, caspase-3. In order to directly investigate the role of caspase-3 in virus-induced neuronal death and CNS tissue injury during encephalitis, we have compared the pathogenesis of reovirus CNS infection in mice lacking the caspase-3 gene (caspase-3 (−/−)) to syngeneic wild-type mice. Prior studies of antiapoptotic treatments for reovirus-infected mice have indicated that protection from reovirus-induced neuronal injury can occur without altering the viral titer in the brains of infected mice. We now show that reovirus infection of caspase-3 (−/−) mice was associated with dramatic reduction in severity of CNS tissue injury, decreased viral antigen and titer in the brain, and enhanced survival of infected mice. Following intracerebral inoculation, the authors also show that virus spread from the brain to the eyes in reovirus-infected caspase-3 (−/−) mice, indicating that viral spread was intact in these mice. Examination of brains of long-term survivors of reovirus infection among caspase-3 (−/−) mice showed that these mice eventually clear their CNS viral infection, and do not manifest residual or delayed CNS tissue injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baer GS, Dermody TS (1997). Mutations in reovirus outer-capsid protein sigma3 selected during persistent infections of L cells confer resistance to protease inhibitor E64. J Virol 71: 4921–4928.

    CAS  PubMed  Google Scholar 

  • Beckham JD, Goody RJ, Clarke P, Bonny C, Tyler KL (2007). Novel strategy for treatment of viral central nervous system infection by using a cell-permeating inhibitor of c-Jun N-terminal kinase. J Virol 81: 6984–6992.

    Article  CAS  PubMed  Google Scholar 

  • Beckham JD, Tuttle K, Tyler KL (2009). Reovirus activates transforming growth factor beta and bone morphogenetic protein signaling pathways in the central nervous system that contribute to neuronal survival following infection. J Virol 83: 5035–5045.

    Article  CAS  PubMed  Google Scholar 

  • Clarke P, Beckham JD, Leser JS, Hoyt CC, Tyler KL (2009). Fas-mediated apoptotic signaling in the mouse brain following reovirus infection. J Virol 83: 6161–6170.

    Article  CAS  PubMed  Google Scholar 

  • DeBiasi RL, Kleinschmidt-Demasters BK, Richardson-Burns S, Tyler KL (2002). Central nervous system apoptosis in human herpes simplex virus and cytomegalovirus encephalitis. J Infect Dis 186: 1547–1557.

    Article  PubMed  Google Scholar 

  • Debiasi RL, Squier MK, Pike B, Wynes M, Dermody TS, Cohen JJ, Tyler KL (1999). Reovirus-induced apoptosis is preceded by increased cellular calpain activity and is blocked by calpain inhibitors. J Virol 73: 695–701.

    CAS  PubMed  Google Scholar 

  • Eguchi R, Tone S, Suzuki A, Fujimori Y, Nakano T, Kaji K, Ohta T (2009). Possible involvement of caspase-6 and -7 but not caspase-3 in the regulation of hypoxia-induced apoptosis in tube-forming endothelial cells. Exp Cell Res 315: 327–335.

    Article  CAS  PubMed  Google Scholar 

  • Gafni J, Cong X, Chen SF, Gibson BW, Ellerby LM (2009). Calpain-1 cleaves and activates caspase-7. J Biol Chem 284: 25441–25449.

    Article  CAS  PubMed  Google Scholar 

  • Goody RJ, Hoyt CC, Tyler KL (2005). Reovirus infection of the CNS enhances iNOS expression in areas of virus-induced injury. Exp Neurol 195: 379–390.

    Article  CAS  PubMed  Google Scholar 

  • Graham RK, Deng Y, Slow EJ, Haigh B, Bissada N, Lu G, Pearson J, Shehadeh J, Bertram L, Murphy Z, Warby SC, Doty CN, Roy S, Wellington CL, Leavitt BR, Raymond LA, Nicholson DW, Hayden MR (2006). Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell 125: 1179–1191.

    Article  CAS  PubMed  Google Scholar 

  • Griffin DE (2005). Neuronal cell death in alphavirus encephalomyelitis. Curr Top Microbiol Immunol 289: 57–77.

    Article  CAS  PubMed  Google Scholar 

  • Inoue S, Browne G, Melino G, Cohen GM (2009). Ordering of caspases in cells undergoing apoptosis by the intrinsic pathway. Cell Death Differ 16: 1053–1061.

    Article  CAS  PubMed  Google Scholar 

  • Jonas EA, Hoit D, Hickman JA, Brandt TA, Polster BM, Fannjiang Y, McCarthy E, Montanez MK, Hardwick JM, Kaczmarek LK (2003). Modulation of synaptic transmission by the BCL-2 family protein BCL-xL. J Neurosci 23: 8423–8431.

    CAS  PubMed  Google Scholar 

  • Kleinschmidt MC, Michaelis M, Ogbomo H, Doerr HW, Cinatl J Jr (2007). Inhibition of apoptosis prevents West Nile virus induced cell death. BMC Microbiol 7: 49.

    Article  PubMed  Google Scholar 

  • Kudryashova IV, Onufriev MV, Kudryashov IE, Gulyaeva NV (2009). Caspase-3 activity in hippocampal slices reflects changes in synaptic plasticity. Neurosci Behav Physiol 39: 13–20.

    Article  CAS  PubMed  Google Scholar 

  • Kuida K, Zheng TS, Na S, Kuan C, Yang D, Karasuyama H, Rakic P, Flavell RA (1996). Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384: 368–372.

    Article  CAS  PubMed  Google Scholar 

  • Louneva N, Cohen JW, Han LY, Talbot K, Wilson RS, Bennett DA, Trojanowski JQ, Arnold SE (2008). Caspase-3 is enriched in postsynaptic densities and increased in Alzheimer’s disease. Am J Pathol 173: 1488–1495.

    Article  CAS  PubMed  Google Scholar 

  • Michaelis M, Kleinschmidt MC, Doerr HW, Cinatl J Jr. (2007). Minocycline inhibits West Nile virus replication and apoptosis in human neuronal cells. J Antimicrob Chemother 60: 981–986.

    Article  CAS  PubMed  Google Scholar 

  • Morrison LA, Fields BN, Dermody TS (1993). Prolonged replication in the mouse central nervous system of reoviruses isolated from persistently infected cell cultures. J Virol 67: 3019–3026.

    CAS  PubMed  Google Scholar 

  • Ooi MH, Lewthwaite P, Lai BF, Mohan A, Clear D, Lim L, Krishnan S, Preston T, Chieng CH, Tio PH, Wong SC, Cardosa J, Solomon T (2008). The epidemiology, clinical features, and long-term prognosis of Japanese encephalitis in central sarawak, malaysia, 1997–2005. Clin Infect Dis 47: 458–468.

    Article  PubMed  Google Scholar 

  • Poggioli GJ, Keefer C, Connolly JL, Dermody TS, Tyler KL (2000). Reovirus-induced G(2)/M cell cycle arrest requires sigma1s and occurs in the absence of apoptosis. J Virol 74: 9562–9570.

    Article  CAS  PubMed  Google Scholar 

  • Raschilas F, Wolff M, Delatour F, Chaffaut C, De Broucker T, Chevret S, Lebon P, Canton P, Rozenberg F (2002). Outcome of and prognostic factors for herpes simplex encephalitis in adult patients: results of a multicenter study. Clin Infect Dis 35: 254–260.

    Article  PubMed  Google Scholar 

  • Richardson-Burns SM, Kominsky DJ, Tyler KL (2002). Reovirus-induced neuronal apoptosis is mediated by caspase 3 and is associated with the activation of death receptors. J NeuroVirol 8: 365–380.

    Article  CAS  PubMed  Google Scholar 

  • Richardson-Burns SM, Tyler KL (2004). Regional differences in viral growth and central nervous system injury correlate with apoptosis. J Virol 78: 5466–5475.

    Article  CAS  PubMed  Google Scholar 

  • Richardson-Burns SM, Tyler KL (2005). Minocycline delays disease onset and mortality in reovirus encephalitis. Exp Neurol 192: 331–339.

    Article  CAS  PubMed  Google Scholar 

  • Samuel MA, Morrey JD, Diamond MS (2007). Caspase 3-dependent cell death of neurons contributes to the pathogenesis of West Nile virus encephalitis. J Virol 81: 2614–2623.

    Article  CAS  PubMed  Google Scholar 

  • Sejvar JJ, Haddad MB, Tierney BC, Campbell GL, Marfin AA, Van Gerpen JA, Fleischauer A, Leis AA, Stokic DS, Petersen LR (2003). Neurologic manifestations and outcome of West Nile virus infection. JAMA 290: 511–515.

    Article  PubMed  Google Scholar 

  • Slee EA, Adrain C, Martin SJ (1999a). Serial killers: ordering caspase activation events in apoptosis. Cell Death Differ 6: 1067–1074.

    Article  CAS  PubMed  Google Scholar 

  • Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang HG, Reed JC, Nicholson DW, Alnemri ES, Green DR, Martin SJ (1999b). Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol 144: 281–292.

    Article  CAS  PubMed  Google Scholar 

  • Solomon T, Dung NM, Kneen R, Gainsborough M, Vaughn DW, Khanh VT (2000). Japanese encephalitis. J Neurol Neurosurg Psychiatry 68: 405–415.

    Article  CAS  PubMed  Google Scholar 

  • Thoresen M, Haaland K, Loberg EM, Whitelaw A, Apricena F, Hanko E, Steen PA (1996). A piglet survival model of posthypoxic encephalopathy. Pediatr Res 40: 738–748.

    Article  CAS  PubMed  Google Scholar 

  • Tsao CH, Su HL, Lin YL, Yu HP, Kuo SM, Shen CI, Chen CW, Liao CL (2008). Japanese encephalitis virus infection activates caspase-8 and -9 in a FADD-independent and mitochondrion-dependent manner. J Gen Virol 89: 1930–1941.

    Article  CAS  PubMed  Google Scholar 

  • Tyler KL (1998). Pathogenesis of reovirus infections of the central nervous system. Curr Top Microbiol Immunol 233: 93–124.

    CAS  PubMed  Google Scholar 

  • Tyler KL, Bronson RT, Byers KB, Fields B (1985). Molecular basis of viral neurotropism: experimental reovirus infection. Neurology 35: 88–92.

    CAS  PubMed  Google Scholar 

  • Walsh JG, Cullen SP, Sheridan C, Luthi AU, Gerner C, Martin SJ (2008). Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc Natl Acad Sci U S A 105: 12815–12819.

    Article  CAS  PubMed  Google Scholar 

  • Wetzel JD, Wilson GJ, Baer GS, Dunnigan LR, Wright JP, Tang DS, Dermody TS (1997). Reovirus variants selected during persistent infections of L cells contain mutations in the viral S1 and S4 genes and are altered in viral disassembly. J Virol 71: 1362–1369.

    CAS  PubMed  Google Scholar 

  • Zheng TS, Hunot S, Kuida K, Momoi T, Srinivasan A, Nicholson DW, Lazebnik Y, Flavell RA (2000). Deficiency in caspase-9 or caspase-3 induces compensatory caspase activation. Nat Med 6: 1241–1247.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. David Beckham.

Additional information

This work was supported in part by VA Merit funding, NIH 5K08AI076518, NIH 5R01NS050138, NIH 1R01NS051403, and ASCI Young Investigator Award.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beckham, J.D., Tuttle, K.D. & Tyler, K.L. Caspase-3 activation is required for reovirus-induced encephalitis in vivo . Journal of NeuroVirology 16, 306–317 (2010). https://doi.org/10.3109/13550284.2010.499890

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.3109/13550284.2010.499890

Keywords

Navigation