Skip to main content
Log in

Structutral Phase Transitions in the Chemisorbed Chlorine Layer on Ag(100)

  • SYNTHESIS AND DIAGNOSTICS OF MICRO- AND NANOSTRUCTURES
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

Structural transformations under chlorine adsorption on the Ag(100) surface have been studied with scanning tunneling microscopy (STM) and within the density functional theory (DFT) calculations. The DFT method reveals that the preferable adsorption site of chlorine atoms is the fourfold hollow position. The STM technique is used to study the disorder–order structural phase transition occurring at a gradual increase in the chlorine coverage, which results in formation of the с(2 × 2) structure on the Ag(100) surface. It is found that the critical coverage of the ordering corresponds to ≈0.34–0.35 monolayer (ML). The chemisorbed chlorine monolayer is saturated at the coverage of 0.5 ML corresponding to the formation of the c(2 × 2) structure. Further chlorine absorption leads to nucleation and growth of AgCl islands near the edges of atomic steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. R. G. Jones, “Halogen adsorption on solid surfaces,” Prog. Surf. Sci. 27 (1–2), 25–160 (1988). https://doi.org/10.1016/0079-6816(88)90013-5

    Article  ADS  Google Scholar 

  2. B. V. Andryushechkin, T. V. Pavlova, and K. N. Eltsov, “Adsorption of halogens on metal surfaces,” Surf. Sci. Rep. 73 (3), 83–115 (2018). https://doi.org/10.1016/j.surfrep.2018.03.001

    Article  ADS  Google Scholar 

  3. J. Serafin, A. Liu, and S. Seyedmonir, “Surface science and the silver-catalyzed epoxidation of ethylene: An industrial perspective,” J. Mol. Catal. A: Chem. 131 (1–3), 157–168 (1998). https://doi.org/10.1016/S1381-1169(97)00263-X

    Article  Google Scholar 

  4. C. T. Campbell and M. T. Paffett, “The role of chlorine promoters in catalytic ethylene epoxidation over the Ag(110) surface,” Appl. Surf. Sci. 19 (1–4), 28–42 (1984). https://doi.org/10.1016/0378-5963(84)90051-5

    Article  ADS  Google Scholar 

  5. C. T. Campbell and B. E. Koel, “Chlorine promotion of selective ethylene oxidation over Ag(110): Kinetics and mechanism,” J. Catal. 92 (2), 272–283 (1985). https://doi.org/10.1016/0021-9517(85)90261-1

    Article  Google Scholar 

  6. C. T. Campbell, “Chlorine promoters in selective ethylene epoxidation over Ag(111): A comparison with Ag(110),” J. Catal. 99 (1), 28–38 (1986). https://doi.org/10.1016/0021-9517(86)90195-8

    Article  Google Scholar 

  7. R. A. Van Santen and H. P. C. E. Kuipers, “The mechanism of ethylene epoxidation,” Adv. Catal. 35, 265–321 (1987). https://doi.org/10.1016/S0360-0564(08)60095-4

    Article  Google Scholar 

  8. J. T. Jankowiak and M. A. Barteau, “Ethylene epoxidation over silver and copper–silver bimetallic catalysts: I. Kinetics and selectivity,” J. Catal. 236 (2), 366–378 (2005). https://doi.org/10.1016/j.jcat.2005.10.018

    Article  Google Scholar 

  9. T. C. Rocha, M. Hävecker, A. Knop-Gericke, and R. Schlögl, “Promoters in heterogeneous catalysis: The role of Cl on ethylene epoxidation over Ag,” J. Catal. 312, 12–16 (2014). https://doi.org/10.1016/j.jcat.2014.01.002

    Article  Google Scholar 

  10. M. Atkins, J. Couves, M. Hague, B. Sakakini, and K. Waugh, “On the role of Cs, Cl and subsurface O in promoting selectivity in Ag/α-Al2O3 catalysed oxidation of ethene to ethene epoxide,” J. Catal. 235 (1), 103–113 (2005). https://doi.org/10.1016/j.jcat.2005.07.019

    Article  Google Scholar 

  11. K. Waugh and M. Hague, “The detailed kinetics and mechanism of ethylene epoxidation on an oxidised Ag/α-Al2O3 catalyst,” Catal. Today 157 (1–4), 44–48 (2010). https://doi.org/10.1016/j.cattod.2010.07.003

    Article  Google Scholar 

  12. M. Ozbek, I. Onal, and R. van Santen, “Ethylene epoxidation catalyzed by chlorine-promoted silver oxide,” J. Phys.: Condens. Matter 23 (40), 404202 (2011). https://doi.org/10.1088/0953-8984/23/40/404202

    Article  Google Scholar 

  13. H. Xu, L. Zhu, Y. Nan, Y. Xie, and D. Cheng, “Revisit the role of chlorine in selectivity enhancement of ethylene epoxidation,” Ind. Eng. Chem. Res. 58 (47), 21403–21412 (2019). https://doi.org/10.1021/acs.iecr.9b04993

    Article  Google Scholar 

  14. C. Carlisle, T. Fujimoto, W. Sim, and D. King, “Atomic imaging of the transition between oxygen chemisorption and oxide film growth on Ag{111},” Surf. Sci. 470 (1–2), 15–31 (2000). https://doi.org/10.1016/S0039-6028(00)00831-1

    Article  ADS  Google Scholar 

  15. A. Michaelides, M.-L. Bocquet, P. Sautet, A. Alavi, and D. King, “Structures and thermodynamic phase transitions for oxygen and silver oxide phases on Ag{111},” Chem. Phys. Lett. 367, 344–350 (2003). https://doi.org/10.1016/S0009-2614(02)01699-8

    Article  ADS  Google Scholar 

  16. J. Schnadt, J. Knudsen, X. L. Hu, A. Michaelides, R. T. Vang, K. Reuter, Z. Li, E. Lægsgaard, M. Scheffler, and F. Besenbacher, “Experimental and theoretical study of oxygen adsorption structures on Ag(111),” Phys. Rev. B 80 (7), 075424 (2009). https://doi.org/10.1103/PhysRevB.80.075424

    Article  ADS  Google Scholar 

  17. B. V. Andryushechkin,V. M. Shevlyuga, T. V. Pavlova, G. M. Zhidomirov, and K. N. Eltsov, “Adsorption of O2 on Ag(111): Evidence of local oxide formation,” Phys. Rev. Lett. 117 (5), 056101 (2016). https://doi.org/10.1103/PhysRevLett.117.056101

    Article  ADS  Google Scholar 

  18. G. Rovida, F. Pratesi, M. Maglietta, and E. Ferroni, “LEED study of chlorine chemisorption on the silver (111) surface,” Jpn. J. Appl. Phys. 13 (S2), 117–120 (1974). https://doi.org/10.7567/JJAPS.2S2.117

    Article  Google Scholar 

  19. C. T. Campbell, “Atomic and molecular oxygen adsorption on Ag(111),” Surf. Sci. 157 (1), 43–60 (1985). https://doi.org/10.1016/0039-6028(85)90634-X

    Article  ADS  Google Scholar 

  20. R. Grant and R. Lambert, “Basic studies of the oxygen surface chemistry of silver: Chemisorbed atomic and molecular species on pure Ag(111),” Surf. Sci. 146 (1), 256–268 (1984). https://doi.org/10.1016/0039-6028(84)90241-3

    Article  ADS  Google Scholar 

  21. C. I. Carlisle, D. A. King, M.-L. Bocquet, J. Cerdá, and P. Sautet, “Imaging the surface and the interface atoms of an oxide film on Ag(111) by scanning tunneling microscopy: Experiment and theory,” Phys. Rev. Lett. 84 (17), 3899–3902 (2000). https://doi.org/10.1103/PhysRevLett.84.3899

    Article  ADS  Google Scholar 

  22. M. Schmid, A. Reicho, A. Stierle, I. Costina, J. Klikovits, P. Kostelnik, O. Dubay, G. Kresse, J. Gustafson, E. Lundgren, J. N. Andersen, H. Dosch, and P. Varga, “Structure of Ag(111)–p(4×4)–O: No silver oxide,” Phys. Rev. Lett. 96 (14), 146102 (2006). https://doi.org/10.1103/PhysRevLett.96.146102

    Article  ADS  Google Scholar 

  23. B. V. Andryushechkin, V. M. Shevlyuga, T. V. Pavlova, G. M. Zhidomirov, and K. N. Eltsov, “Adsorption of molecular oxygen on the Ag(111) surface: A combined temperature-programmed desorption and scanning tunneling microscopy study,” J. Chem. Phys. 148 (24), 244702 (2018). https://doi.org/10.1063/1.5037169

    Article  ADS  Google Scholar 

  24. B. V. Andryushechkin, V. V. Cherkez, E. V. Gladchenko, G. M. Zhidomirov, B. Kierren, Y. Fagot-Revurat, D. Malterre, and K. N. Eltsov, “Structure of chlorine on Ag(111): Evidence of the (3×3) reconstruction,” Phys. Rev. B 81 (20), 205434 (2010). https://doi.org/10.1103/PhysRevB.81.205434

    Article  ADS  Google Scholar 

  25. B. V. Andryushechkin, V. V. Cherkez, E. V. Gladchenko, G. M. Zhidomirov, B. Kierren, Y. Fagot-Revurat, D. Malterre, and K. N. Eltsov, “Atomic structure of Ag(111) saturated with chlorine: Formation of Ag3Cl7 clusters,” Phys. Rev. B 84 (7), 075452 (2011). https://doi.org/10.1103/PhysRevB.84.075452

    Article  ADS  Google Scholar 

  26. B. V. Andryushechkin, V. V. Cherkez, B. Kierren, Y. Fagot-Revurat, D. Malterre, and K. N. Eltsov, “Commensurate-incommensurate phase transition in chlorine monolayer chemisorbed on Ag(111): Direct observation of crowdion condensation into a domain-wall fluid,” Phys. Rev. B 84 (20), 205422 (2011). https://doi.org/10.1103/PhysRevB.84.205422

    Article  ADS  Google Scholar 

  27. B. V. Andryushechkin, V. V. Cherkez, E. V. Gladchenko, G. M. Zhidomirov, B. Kierren, Y. Fagot-Revurat, D. Malterre, and K. N. Eltsov, “New insight into the structure of saturated chlorine layer on Ag(111): LT-STM and DFT study,” Appl. Surf. Sci. 267, 21–25 (2013). https://doi.org/10.1016/j.apsusc.2012.04.150

    Article  ADS  Google Scholar 

  28. G. Rovida and F. Pratesi, “Chlorlne monolayers on the low-index faces of silver,” Surf. Sci. 51 (1), 270–282 (1975). https://doi.org/10.1016/0039-6028(75)90248-4

    Article  ADS  Google Scholar 

  29. E. Zanazzi, F. Jona, D. W. Jepsen, and P. M. Marcus, “Atomic arrangement in the c(2×2) structure of Cl on Ag(100),” Phys. Rev. B 14 (2), 432 (1976). https://doi.org/10.1103/PhysRevB.14.432

    Article  ADS  Google Scholar 

  30. E. Zanazzi and F. Jona, “A reliability factor for surface structure determinations by low-energy electron diffraction,” Surf. Sci. 62 (1), 61 (1977). https://doi.org/10.1016/0039-6028(77)90428-9

    Article  ADS  Google Scholar 

  31. F. Jona and P. M. Marcus, “Comment on the geometry and electronic structure of Cl on Cu{100} and Ag{001},” Phys. Rev. Lett. 50 (22), 1823 (1983). https://doi.org/10.1103/PhysRevLett.50.1823

    Article  ADS  Google Scholar 

  32. Y. Tu and J. M. Blakely, “Chlorine adsorption on the low index surfaces of silver: Energetics and structures,” Surf. Sci. 85 (2), 276–288 (1979). https://doi.org/10.1016/0039-6028(79)90251-6

    Article  ADS  Google Scholar 

  33. M. J. Cardillo, G. E. Becker, D. R. Hamann, J. A. Serri, L. Whitman, and L. F. Mattheiss, “Geometry of the Ag{001}-c(2×2) Cl structure as determined by He diffraction,” Phys. Rev. B 28 (2), 494–503 (1983). https://doi.org/10.1103/PhysRevB.28.494

    Article  ADS  Google Scholar 

  34. S. P. Weeks and J. E. Rowe, “Adatom bonding effects from coverage-dependent angle-resolved photoemission: Ag(001) + Cl,” J. Vac. Sci. Technol. 16 (2), 470–473 (1979). https://doi.org/10.1116/1.569985

    Article  ADS  Google Scholar 

  35. H. S. Greenside and D. R. Hamann, “Cl chemisorption on the Ag(001) surface: Geometry and electronic structure,” Phys. Rev. B 23 (10), 4879–4887 (1981). https://doi.org/10.1103/PhysRevB.23.4879

    Article  ADS  Google Scholar 

  36. D. R. Hamann, L. F. Mattheiss, and H. S. Greenside, “Comparative LCAO-LAPW study of Cl chemisorption on the Ag(001) surface,” Phys. Rev. B 24 (10), 6151–6155 (1981). https://doi.org/10.1103/PhysRevB.24.6151

    Article  ADS  Google Scholar 

  37. E. Bartels and A. Goldmann, “Adsorption geometry from angle-resolved photoemission: The case of Cl on Ag(001),” Solid State Commun. 44 (10), 1419–1421 (1982). https://doi.org/10.1016/0038-1098(82)90022-9

    Article  ADS  Google Scholar 

  38. Z. Tian, K. Zhang, and X. Xie, “Theoretical studies of Cl on Ag(100) surface by SW-Xα-SCF method,” Surf. Sci. 163 (1), 1–12 (1985). https://doi.org/10.1016/0039-6028(85)90843-X

    Article  ADS  Google Scholar 

  39. M. Kitson and R. M. Lambert, “A structural and kinetic study of chlorine and silver chloride on Ag(100): The transition from overlayer to bulk halide,” Surf. Sci. 100 (2), 368–380 (1980). https://doi.org/10.1016/0039-6028(80)90379-9

    Article  ADS  Google Scholar 

  40. D. E. Taylor, E. D. Williams, R. L. Park, N. C. Bartelt, and T. L. Einstein, “Two-dimensional ordering of chlorine on Ag(100),” Phys. Rev. B 32 (7), 4653–4659 (1985). https://doi.org/10.1103/physrevb.32.4653

    Article  ADS  Google Scholar 

  41. M. Bowker, K. C. Waugh, B. Wolfindale, G. Lamble, and D. A. King, “The adsorption of chlorine and chloridation of Ag(100),” Surf. Sci. 179 (2–3), 254–266 (1987). https://doi.org/10.1016/0039-6028(87)90057-4

    Article  ADS  Google Scholar 

  42. G. M. Lamble, R. S. Brooks, J. C. Campuzano, D. A. King, and D. Norman, “Structure of the c(2×2) coverage of Cl on Ag(100): A controversy resolved by surface extended X-ray-absorption fine-structure spectroscopy,” Phys. Rev. B 36 (3), 1796(R)–1798(R) (1987). https://doi.org/10.1103/PhysRevB.36.1796

  43. I. Horcas and R. Fernández, “WSXM: A software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78 (1), 013705 (2007). https://doi.org/10.1063/1.2432410

    Article  ADS  Google Scholar 

  44. G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B 47 (1), 558(R)–561(R) (1993). https://doi.org/10.1103/PhysRevB.47.558

  45. G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54 (16), 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  ADS  Google Scholar 

  46. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77 (18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  47. H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13 (12), 5188–5192 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  ADS  MathSciNet  Google Scholar 

  48. D. E. P. Vanpoucke and G. Brocks, “Formation of Pt-induced Ge atomic nanowires on Pt/Ge(001): A density functional theory study,” Phys. Rev. B 77 (24), 241308(R) (2008). https://doi.org/10.1103/PhysRevB.77.241308

  49. J. Tersoff and D. R. Hamann, “Theory of the scanning tunneling microscope,” Phys. Rev. B 31 (2), 805–813 (1985). https://doi.org/10.1103/PhysRevB.31.805

    Article  ADS  Google Scholar 

  50. B. V. Andryushechkin, K. N. Eltsov, V. M. Shevlyuga, and V. Yu. Yurov, “Direct STM observation of surface modification and growth of AgCl islands on Ag(111) upon chlorination at room temperature,” Surf. Sci. 431 (1–3), 96–108 (1999). https://doi.org/10.1016/S0039-6028(99)00429-X

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research, project no. 20-02-00767a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Andryushechkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Potapov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andryushechkin, B.V., Loginov, B.A. Structutral Phase Transitions in the Chemisorbed Chlorine Layer on Ag(100). Phys. Wave Phen. 31, 67–73 (2023). https://doi.org/10.3103/S1541308X23020024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X23020024

Keywords:

Navigation