Skip to main content
Log in

Vibration–Vortex Mechanism of Radical-Reaction Activation in an Aqueous Solution: Physical Analogies

  • TRANSFORMATION OF THE AQUEOUS SOLUTION COMPOSITION UNDER EXTERNAL INFLUENCE
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

A complete set of particular theoretical problems that must be solved for predictive description of radical reactions in aqueous solutions under external mechanical impact is substantiated and formulated. Some of the problems stated are found to be conceptually similar to certain problems of the physics of magnetism and laser physics. Schemes of experiments for estimating the biochemical activity and background content of substances in highly purified water are proposed by an example of hydrogen peroxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. D. T. Sawyer, Oxygen Chemistry (Oxford Univ. Press, New York, 1991).

    Google Scholar 

  2. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine (Oxford Univ. Press, Oxford, 2007).

    Google Scholar 

  3. G. A. Lyakhov and I. A. Shcherbakov, “Approaches to the physical mechanisms and theories of low-concentration effects in aqueous solutions,” Phys. Wave Phenom. 27 (2), 79–86 (2019). https://doi.org/10.3103/S1541308X19020018

    Article  ADS  Google Scholar 

  4. I. A. Shcherbakov, “Specific features of the concentration dependences of impurities in condensed media,” Phys. Wave Phenom. 28 (2), 83–87 (2020). https://doi.org/10.3103/S1541308X20020156

    Article  ADS  Google Scholar 

  5. I. A. Shcherbakov, I. V. Baimler, S. V. Gudkov, G. A. Lyakhov, G. N. Mikhailova, V. I. Pustovoy, R. M. Sarimov, A. V. Simakin, and A. V. Troitsky, “Influence of a constant magnetic field on some properties of water solutions,” Dokl. Phys. 65 (8), 273–275 (2020). https://doi.org/10.1134/S1028335820080078

    Article  ADS  Google Scholar 

  6. S. V. Gudkov, G. A. Lyakhov, V. I. Pustovoy, and I. A. Shcherbakov, “Influence of mechanical effects on the hydrogen peroxide concentration in aqueous solutions,” Phys. Wave Phenom. 27 (2), 141–144 (2019). https://doi.org/10.3103/S1541308X19020092

    Article  ADS  Google Scholar 

  7. S. V. Gudkov, N. V. Penkov, I. V. Baimler, G. A. Lyakhov, V. I. Pustovoy, A. V. Simakin, R. M. Sarimov, and I. A. Scherbakov, “Effect of mechanical shaking on the physicochemical properties of aqueous solutions,” Int. J. Mol. Sci. 21 (21), 8033 (2020). https://doi.org/10.3390/IJMS21218033

    Article  Google Scholar 

  8. V. I. Bruskov, Zh. K. Masalimov, and A. V. Chernikov, “Heat-induced formation of reactive oxygen species by reduction of dissolve air oxigen,” Dokl. Akad. Nauk. 381 (2), 262–264 (2001) [in Russian]. https://elibrary.ru/item.asp?id=44447015

  9. A. L. Buchachenko, R. Z. Sagdeev, and K. M. Salikhov, Magnetic and Spin Effects in Chemical Reactions (Nauka, Novosibirsk, 1978) [in Russian].

    Google Scholar 

  10. J. I. Morris, R. C. Morrison, D. W. Smith, and J. F. Garst, “Chemically induced dynamic nuclear polarization. General solution of CKO [Closs–Kaptein–Oosterhoff] model. Applicability to reactions run in low magnetic fields,” J. Am. Chem. Soc. 94 (7), 2406–2414 (1972). https://doi.org/10.1021/ja00762a035

    Article  Google Scholar 

  11. R. Z. Sagdeev, K. M. Salikhov, T. V. Leshina, M. A. Kamkha, S. M. Shein, and Yu. N. Molin, “Influence of magnetic field on radical reactions,” JETP Lett. 16 (11), 422–424 (1972). http://www.jetpletters.ac.ru/ps/1766/ article_26857.shtml

    ADS  Google Scholar 

  12. H. Wang and X. Zhang, “Magnetic fields and reactive oxygen species,” Int. J. Mol. Sci. 18 (10), 2175 (2017). https://doi.org/10.3390/IJMS18102175

    Article  Google Scholar 

  13. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics, 3rd ed. (Butterworth-Heinemann, 1976).

    MATH  Google Scholar 

  14. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory, 3rd ed. (Pergamon, Oxford, 1977).

    MATH  Google Scholar 

  15. V. L. Ginzburg, “On the inertia of electrons in metals and the Hall effect,” in In Memory of A. A. Andronov (Akad. Nauk SSSR, Moscow, 1955), pp. 622–628 [in Russian].

    Google Scholar 

  16. I. M. Tsidil’kovskii, “Electrons and holes in an inertial-force field,” Sov. Phys.-Usp. 18 (2), 161–166 (1975). https://doi.org/10.1070/PU1975v018n02ABEH001988

    Article  ADS  Google Scholar 

  17. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics (Butterworth-Heinemann, Oxford, 1982).

    Google Scholar 

  18. G. A. Lyakhov, I. A. Shcherbakov, and M. A. Shermeneva, “Layering phase transition in a liquid solution with cross hydrogen bonds: Bond number density as the second order parameter,” Phys. Wave Phenom. 28 (3), 236–240 (2020). https://doi.org/10.3103/S1541308X20030139

    Article  ADS  Google Scholar 

  19. A. A. Vedenov, Physics of Solutions (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  20. N. G. van Kampen, “Condensation of a classical gas with long-range attraction,” Phys. Rev. 135 (2A), A362–A368 (1964). https://doi.org/10.1103/PhysRev.135.A362

    Article  ADS  MathSciNet  Google Scholar 

  21. Z. Fang, X. Wang, L. Zhou, L. Zhang, and J. Hu, “Formation and stability of bulk nanobubbles by vibration,” Langmuir. 36 (9), 2264–2270 (2020). https://doi.org/10.1021/acs.langmuir.0c00036

    Article  Google Scholar 

  22. L. I. Sedov, Mechanics of Continuum Medium (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  23. N. F. Bunkin, B. W. Ninham, V. A. Babenko, N. V. Suyazov, and A. A. Sychev, “Role of dissolved gas in optical breakdown of water: Differences between effects due to helium and other gases,” J. Phys. Chem. B. 114 (23), 7743–7752 (2010). https://doi.org/10.1021/jp101657f

    Article  Google Scholar 

  24. V. K. Konyukhov, V. I. Tikhonov, and T. L. Tikhonova, “Spin-modification selective adsorption of water molecules on the surface of a corundum ceramic,” Kratk. Soobshch. Fiz. No. 9, 12–13 (1988) [in Russian].

    Google Scholar 

  25. V. I. Tikhonov and A. A. Volkov, “Separation of water into its ortho and para isomers,” Science. 296 (5577), 2363 (2002). https://doi.org/10.1126/SCIENCE.1069513

    Article  Google Scholar 

  26. J. K. Lee, K. L. Walker, H. S. Han, J. Kang, F. B. Prinz, R. M. Waymouth, H. G. Nam, and R. N. Zare, “Spontaneous generation of hydrogen peroxide from aqueous microdroplets,” Proc. Natl. Acad. Sci. U.S.A. 116 (39), 19294–19298 (2019). https://doi.org/10.1073/pnas.1911883116

    Article  Google Scholar 

  27. E. O. Schulz-DuBois and H. E. D. Scovil, US Patent No. 3015072 (December 26, 1961).

  28. N. G. Basov and A. N. Oraevskii, “Attainment of negative temperatures by heating and cooling of a system,” Sov. Phys.-JETP. 17 (5), 1171–1172 (1963).

    Google Scholar 

  29. V. K. Konyukhov and A. M. Prokhorov, “Population inversion in adiabatic expansion of a gas mixtures,” JETP Lett. 3 (11), 286–288 (1966). http://www.jetpletters.ac.ru/cgi-bin/articles/download.cgi/1620/article_ 24792.pdf

    Google Scholar 

  30. V. K. Konyukhov, I. V. Matrosov, A. M. Prokhorov, D. T. Shalunov, and N. N. Shirokov, “Vibrational relaxation of CO2 and N2 molecules in an expanding supersonic gas jet,” JETP Lett. 10 (2), 53–55 (1969). http://www.jetpletters.ac.ru/cgi-bin/articles/download. cgi/1687/article_25689.pdf

    ADS  Google Scholar 

  31. V. K. Konyukhov and A. M. Prokhorov, “Second law of thermodynamics and thermally excited quantum oscillators,” Sov. Phys.-Usp. 19 (2), 618–623 (1976). https://doi.org/10.1070/PU1976v019n07ABEH005276

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Lyakhov.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gudkov, S.V., Lyakhov, G.A., Pustovoy, V.I. et al. Vibration–Vortex Mechanism of Radical-Reaction Activation in an Aqueous Solution: Physical Analogies. Phys. Wave Phen. 29, 108–113 (2021). https://doi.org/10.3103/S1541308X21020060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X21020060

Keywords:

Navigation