Skip to main content
Log in

Spatial Self-Organization of Laser-Induced Graphite Nanonetwork in Diamond

  • INTERACTION OF LASER RADIATION WITH MATTER
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The interior of spontaneously growing graphitized microstructures formed in diamond bulk by picosecond laser pulses has been studied. Longitudinal and cross sections of microstructures, prepared using mechanical polishing and focused ion beam, have been studied by Raman spectroscopy and scanning electron–ion microscopy. The laser irradiation of diamond bulk is found to induce formation of a graphite nanonetwork in the processed region and its subsequent spontaneous growth towards the laser beam by a distance of ~60 µm. The graphite nanonetwork consists of many ~130-nm-thick graphite sheets clustered into segments. It is shown that the thickness of graphite sheets decreases with a decrease in the laser fluence at the modification front, whereas the segment length (~2.6 µm) is independent of the laser fluence at the modification front. A three-dimensional structural model of microsegment has been constructed based on the analysis of several longitudinal and cross sections of microstructures. The mechanism of graphite nanosheet clustering into microsegments is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. R. J. Tapper, “Diamond detectors in particle physics,” Rep. Prog. Phys. 63 (8), 1273–1316 (2000). https://doi.org/10.1088/0034-4885/63/8/203

    Article  ADS  Google Scholar 

  2. T. V. Kononenko, M. Meier, M. S. Komlenok, S. M. Pimenov, V. Romano, V. P. Pashinin, and V. I. Konov, “Microstructuring of diamond bulk by IR femtosecond laser pulses,” Appl. Phys. A. 90 (4), 645–651 (2008). https://doi.org/10.1007/s00339-007-4350-9

    Article  ADS  Google Scholar 

  3. S. Lagomarsino, M. Bellini, C. Corsi, S. Fanetti, F. Gorelli, I. Liontos, J. Parrini, M. Santoro, and S. Sciortino, “Electrical and Raman-imaging characterization of laser-made electrodes for 3D diamond detectors,”Diamond Relat. Mater. 43, 23–28 (2014). https://doi.org/10.1016/j.diamond.2014.01.002

    Article  ADS  Google Scholar 

  4. T. V. Kononenko, E. V. Zavedeev, V. V. Kononenko, K. K. Ashikkalieva, and V. I. Konov, “Graphitization wave in diamond bulk induced by ultrashort laser pulses,” Appl. Phys. A. 119 (2), 405–414 (2015). https://doi.org/10.1007/s00339-015-9109-0

    Article  ADS  Google Scholar 

  5. K. K. Ashikkalieva, T. V. Kononenko, and V. I. Konov, “Graphitization wave in diamond induced by uniformly moving laser focus,” Opt. Laser Technol. 107, 204–209 (2018). https://doi.org/10.1016/j.optlastec.2018.05.040

    Article  ADS  Google Scholar 

  6. K. K. Ashikkalieva, T. V. Kononenko, E. A. Obraztsova, E. V. Zavedeev, E. E. Ashkinazi, A. A. Mikhutkin, A. A. Khomich, and V. I. Konov, “Nanostructured interior of laser-induced wires in diamond,” Diamond Relat. Mater. 91, 183–189 (2019). https://doi.org/10.1016/j.diamond.2018.11.023

    Article  ADS  Google Scholar 

  7. T. V. Kononenko, P. N. Dyachenko, and V. I. Konov, “Diamond photonic crystals for the IR spectral range,” Opt. Lett. 39 (24), 6962–6965 (2014). https://doi.org/10.1364/OL.39.006962

    Article  ADS  Google Scholar 

  8. M. Girolami, L. Criante, F. Di Fonzo, S. Lo Turco, A. Mezzetti, A. Notargiacomo, M. Pea, A. Bellucci, P. Calvani, V. Valentini, and D. M.Trucchi, “Graphite distributed electrodes for diamond-based photon-enhanced thermionic emission solar cells,” Carbon. 111, 48–53 (2017). https://doi.org/10.1016/j.carbon.2016.09.061

    Article  Google Scholar 

  9. A. A. Khomich, K. K. Ashikkalieva, A. P. Bolshakov, T. V. Kononenko, V. G. Ralchenko, V. I. Konov, P. Oliva, G. Conte, and S. Salvatori, “Very long laser-induced graphitic pillars buried in single-crystal CVD-diamond for 3D detectors realization,” Diamond Relat. Mater. 90, 84–92 (2018). https://doi.org/10.1016/j.diamond.2018.10.006

    Article  ADS  Google Scholar 

  10. K. K. Ashikkalieva, T. V. Kononenko, E. A. Obraztsova, E. V. Zavedeev, A. A. Khomich, E. E. Ashkinazi, and V. I. Konov, “Direct observation of graphenic nanostructures inside femtosecond-laser modified diamond,” Carbon. 102, 383–389 (2016). https://doi.org/10.1016/j.carbon.2016.02.044

    Article  Google Scholar 

  11. A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B. 61 (20), 14095–14107 (2000). https://doi.org/10.1103/PhysRevB.61.14095

    Article  ADS  Google Scholar 

  12. L. G. Cançado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhães-Paniago, and M. A. Pimenta, “General equation for the determination of the crystallite size L a of nanographite by Raman spectroscopy,” Appl. Phys. Lett. 88 (16), 163106 (2006). https://doi.org/10.1063/1.2196057

    Article  ADS  Google Scholar 

  13. R. H. Telling, C. J. Pickard, M. C. Payne, and J. E. Field, “Theoretical strength and cleavage of diamond,” Phys. Rev. Lett. 84 (22), 5160–5163 (2000). https://doi.org/10.1103/PhysRevLett.84.5160

    Article  ADS  Google Scholar 

  14. V. N. Strekalov, V. I. Konov, V. V. Kononenko, and S. M. Pimenov, “Early stages of laser graphitization of diamond,” Appl. Phys. A. 76 (4), 603–607 (2003). https://doi.org/10.1007/s00339-002-2014-3

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 18-32-01072\19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Ashikkalieva.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashikkalieva, K.K., Gololobov, V.M., Mikhutkin, A.A. et al. Spatial Self-Organization of Laser-Induced Graphite Nanonetwork in Diamond. Phys. Wave Phen. 28, 375–381 (2020). https://doi.org/10.3103/S1541308X20040020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X20040020

Navigation