Skip to main content
Log in

Quantum well of a new type based on gapless graphene with different fermi velocities

  • Quantum Electrodynamics of Superlattices
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The energy spectrum of a new-type quantumwell composed of gapless graphenes with identical work functions and different Fermi velocities is investigated. Symmetric and asymmetric quantum wells are considered. In a symmetric well, there is always at least one bound state. In an asymmetric well, a bound state appears, beginning at a certain finite momentum. A possibility of appearance of boundary states is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai, “Room-Temperature All-Semiconducting Sub-10-nm Graphene Nanoribbon Field-Effect Transistors,” Phys. Rev. Lett. 100, 206803 (2008).

    Article  ADS  Google Scholar 

  2. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H.L. Stormer, “Ultrahigh Electron Mobility in Suspended Graphene,” Solid State Commun. 146, 351 (2008).

    Article  ADS  Google Scholar 

  3. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, “The Electronic Properties of Graphene,” Rev. Mod. Phys. 81(1), 109 (2009).

    Article  ADS  Google Scholar 

  4. P.B. Sorokin and L.A. Chernozatonskii, “Graphene-Based Semiconductor Nanostructures,” Phys.-Usp. 56(2), 105 (2013).

    Article  ADS  Google Scholar 

  5. P.V. Ratnikov and A.P. Silin, “Size Quantization in Planar Graphene-Based Heterostructures: Pseudospin Splitting, Interface States, and Excitons,” JETP. 114(3), 512 (2012).

    Article  ADS  Google Scholar 

  6. C. Hwang, D.A. Siegel, Sung-Kwan Mo, W. Regan, A. Ismach, Y. Zhang, A. Zettl, and A. Lanzara, “Fermi Velocity Engineering in Graphene by Substrate Modification,” Sci. Rep. 2, 590 (2012).

    Article  ADS  Google Scholar 

  7. D.C. Elias, R.V. Gorbachev, A.S. Mayorov, S.V. Morozov, A.A. Zhukov, P. Blake, L.A. Ponomarenko, I.V. Grigorieva, K.S. Novoselov, F. Guinea, and A.K. Geim, “Dirac Cones Reshaped by Interaction Effects in Suspended Graphene,” Nature Phys. 7, 701 (2011).

    Article  ADS  Google Scholar 

  8. A.K. Obukhova, P.V. Pekh, and A.P. Silin, “Heterostructures Based on Gapless Graphene with Different Fermi Velocities,” Phys. Wave Phenom. 24(3), 219 (2016) [DOI: 10.3103/S1541308X16030043].

    Article  Google Scholar 

  9. A.V. Kolesnikov, R. Lipperheide, A.P. Silin, and U. Wille, “Interface States in Junctions of Two Semiconductors with Intersecting Dispersion Curves,” Europhys. Lett. 43, 331 (1998).

    Article  ADS  Google Scholar 

  10. E.A. Andryushin, A.P. Silin, and S.A. Vereshchagin, “Interface States in Narrow-Gap Semiconductor Structure without Band Inversion,” Phys. Low-Dim. Struct. 3/4, 79 (2000).

    Google Scholar 

  11. P.V. Ratnikov and A.P. Silin, “Boundary States in Graphene Heterojunctions,” Phys. Solid State. 52(8), 1763 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. L. Pekh.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pekh, P.L., Silin, A.P. Quantum well of a new type based on gapless graphene with different fermi velocities. Phys. Wave Phen. 25, 30–34 (2017). https://doi.org/10.3103/S1541308X17010058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X17010058

Navigation