Skip to main content
Log in

Pretreatment of ITO electrode and its physiochemical properties: Towards device fabrication

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The aim of this review is to discuss the effect of different pretreatments on the physical and chemical properties of Indium Tin Oxide (ITO) thin films, as well as device performance towards sensor applications. The emphasis is on the surface science studies of ITO thin films before and after treatment in order to provide connecting points between surface properties with a broader field of materials science of ITO. The morphology of a monolayer deposited on ITO directly affects the surface properties of prepared ITO films. Thus, it is a topic of interest to study the influence pretreatment on the surface morphology of ITO films on device fabrication and applications as a device platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nakanishi, T., Ueno, T., Matsunaga, M., Khan, M.Z.H., et al., Electroanalysis, 2010, vol. 22, p. 393.

    Article  Google Scholar 

  2. Kim, H., Pique, A., Horwitz, J.S., Mattoussi, H., et al., Appl. Phys. Lett., 1999, vol. 74, pp. 34444–34446.

    Google Scholar 

  3. Delahoy, A.E., Chen, L., Akhtar, M., Sang, B., et al., Sol. Energy, 2004, vol. 77, no. 6, pp. 785–793.

    Article  Google Scholar 

  4. Gandia, J.J., Carabe, J., and Gutierrez, M.T., J. Mater. Process Technol., 2003, vols. 143–144, pp. 358–361.

    Article  Google Scholar 

  5. Khan, M.Z.H., Nakanishi, T., Kuroiwa, S., Hoshi, Y., et al., Electrochim. Acta, 2011, vol. 56, pp. 8657–8661.

    Article  Google Scholar 

  6. Rhaleb, El., Benamar, H., Rami, E., and Roger, M., Appl. Surf. Sci., 2002, vol. 201, pp. 138–145.

    Article  Google Scholar 

  7. Yong, T.-K., Tan, S.S., Nee, C.H., and Yap, S.S., Mater. Lett., 2012, vol. 66, pp. 280–282.

    Article  Google Scholar 

  8. Kim, S.S., Choi, S.Y., Park, C.G., and Jin, H.W., Thin Solid Films, 1999, vol. 347, nos. 1–2, pp. 155–160.

    Article  Google Scholar 

  9. Deng, W., Ohgi, T., Nejo, H., and Fujita, D., Appl. Phys. A: Mater. Sci. Process., 2001, vol. 72, pp. 595–601.

    Article  Google Scholar 

  10. Hu, Y.L., Diao, X.G., Wang, C., and Hao, W.C., Vacuum, 2004, vol. 75, pp. 183–188.

    Article  Google Scholar 

  11. Fallah, H.R., Ghasemi, M., Hassanzadeh, A., and Steki, H., Mater. Res Bull., 2007, vol. 42, pp. 487–496.

    Article  Google Scholar 

  12. Pandey, B., Pal, P.P., Bera, S., Ray, S.K., et al., Appl. Surf. Sci., 2012, vol. 261, pp. 789–799.

    Article  Google Scholar 

  13. Jonda, C., Mayer, A.B.R., Stolz, U., Elschner, A., et al., Mater. Sci., 2000, vol. 35, pp. 5645–5651.

    Article  Google Scholar 

  14. Brumbach, M., Veneman, P.A., Marrikar, F.S., and Schulmeyer, T., Langmuir, 2007, vol. 23, p. 11089.

    Article  Google Scholar 

  15. Kim, J.S., Granstrom, M., Friend, R.H., and Johansson, N., J. Appl. Phys., 1998, vol. 84, p. 6859.

    Article  Google Scholar 

  16. Hamberg, I., Hjortsberg, A., and Granqvist, C.G., Appl. Phys. Lett., 1982, vol. 40, no. 5, pp. 362–364.

    Article  Google Scholar 

  17. Meng, L.J. and Dos Santos, M.P., Thin Solid Films, 1998, vol. 322, pp. 56–62.

    Article  Google Scholar 

  18. Wu, W.F. and Chiou, B.S., Thin Solid Films, 1994, vol. 247, pp. 201–207.

    Article  Google Scholar 

  19. Szczyrbowski, J., Dietrich, A., and Hoffmann, H., Phys. State Solidi A, 1983, vol. 78, pp. 243–252.

    Article  Google Scholar 

  20. Hartnagel, H.L., Dawar, A.L., Jain, A.K., and Jagadish, C., Semiconducting Transparent Thin Films, Bristol: Inst. Phys., 1995.

    Google Scholar 

  21. Burstein, E., Phys. Rev., 1954, vol. 93, pp. 632–633.

    Article  Google Scholar 

  22. Manifacier, J.C., Bresse, J.F., Szepessy, L., and Peretin, M., Mater. Res Bull., 1979, vol. 14, no. 1, pp. 109–119.

    Article  Google Scholar 

  23. Maruyama, T. and Tabata, K., Jpn. J. Appl. Phys., 1990, vol. 29, no. 2, pp. L355–L357.

    Article  Google Scholar 

  24. Maruyama, T. and Fukui, K., J. Appl. Phys., 1991, vol. 70, no. 7, pp. 3848–3851.

    Article  Google Scholar 

  25. Maruyama, T. and Fukui, K., Thin Solid Films, 1991, vol. 203, pp. 297–302.

    Article  Google Scholar 

  26. Furusaki, T., Kodaira, K., Yamamoto, M., Shimada, S., et al., Mater. Res. Bull., 1986, vol. 21, pp. 803–806.

    Article  Google Scholar 

  27. Maruyama, T. and Kojima, A., Jpn. J. Appl. Phys., 1988, vol. 27, no. 10, pp. L1829–L1831.

    Article  Google Scholar 

  28. Xu, J.J., Shaikh, A.S., and Vest, R.W., Thin Solid Films, 1988, vol. 161, pp. 273–280.

    Article  Google Scholar 

  29. Gallagher, D., Scanlan, F., Houriet, R., Mathieu, R.J., et al., Mater. Res., 1993, vol. 8, no. 12, pp. 3135–3144.

    Article  Google Scholar 

  30. Salehi, A., Thin Solid Films, 1998, vol. 324, pp. 214–218.

    Article  Google Scholar 

  31. Ishii, M., Mori, T., Fujikawa, H., Tokito, S., et al., J. Lumin., 2000, vols. 87–89, pp. 1165–1167.

    Article  Google Scholar 

  32. Wu, C.C., Wu, C.I., Sturm, J.C., and Kahn, A., Appl. Phys. Lett., 1997, vol. 70, 1348–1350.

    Article  Google Scholar 

  33. Fujita, S., Sakamoto, T., Ueda, K., Ohta, K., et al., Jpn. J. Appl. Phys., 1997, vol. 36, pp. 350–353.

    Article  Google Scholar 

  34. Furukawa, K., Terasaka, Y., Ueda, H., and Matsumura, M., Synth. Met., 1997, vol. 91, pp. 99–101.

    Article  Google Scholar 

  35. Brumbach, M., Veneman, P.A., Marrikar, F.S., Schulmeyer, T., et al., Langmuir, 2007, vol. 23, pp. 11089–11099.

    Article  Google Scholar 

  36. Bradshaw, G. and Hughest, A.J., Thin Solid Films, 1976, vol. 33, pp. L5–L8.

    Article  Google Scholar 

  37. Suess, C., Wenzl, F.P., Jakopic, G., Wuchse, M., et al., Surf. Sci., 2002, vol. 507–510, pp. 473–479.

    Article  Google Scholar 

  38. Tsai, T.H. and Wu, Y.F., Microelectron. Eng., 2006, vol. 83, pp. 536–541.

    Article  Google Scholar 

  39. Besbes, S., Ouada, H.B., Davenas, J., Ponsonnet, L., et al., Mater. Sci. Eng., C, 2006, vol. 26, pp. 505–510.

    Article  Google Scholar 

  40. Raoufi, D. and Hosseinpanahi, F., Appl. Phys., 2013, vol. 7, no. 21, pp. 1–8.

    Google Scholar 

  41. Shigesato, Y., Koshiishi, R., Kawashima, T., and Ohsako, J., Vacuum, 2000, vol. 59, pp. 614–621.

    Article  Google Scholar 

  42. Buzio, R., Gnecco, E., Boragno, C., Valbusa, U., et al., Surf. Sci., 2000, vol. 444, pp. L1–L6.

  43. Morales, E.H. and Diebold, U., Appl. Phys. Lett., 2009, vol. 95, p. 253105.

    Article  Google Scholar 

  44. Carvalhal, R.F., Freire, R.S., and Kubota, L.T., Electroanalysis, 2005, vol. 17, pp. 1251–1259.

    Article  Google Scholar 

  45. Sun, S.G., Cai, W.B., Wan, L.J., and Osawa, M., J. Phys. Chem. B, 1999, vol. 103, pp. 2460–2466.

    Article  Google Scholar 

  46. Burke, L.D., Hurley, L.M., Lodge, V.E., and Mooney, M.B., J. Solid State Electrochem., 2001, vol. 5, pp. 250–260.

    Article  Google Scholar 

  47. Krstajic, N.V., Vracar, L.M., Radmilovic, V.R., et al., Surf. Sci., 2007, vol. 601, pp. 1949–1966.

    Article  Google Scholar 

  48. Orellana, R.C., Martins, M.E., and Arvía, A.J., Electrochim. Acta, 1979, vol. 24, pp. 469–471.

    Article  Google Scholar 

  49. Bhalla, V., Carrara, S., Stagni, C., and Samorì, B., Thin Solid Films, 2010, vol. 518, pp. 3360–3366.

    Article  Google Scholar 

  50. Kang, J. and Rowntree, P.A., Langmuir, 2007, vol. 23, pp. 509–516.

    Article  Google Scholar 

  51. Ron, H., Matlis, S., and Rubinstein, I., Langmuir, 1998, vol. 14, pp. 1116–1121.

    Article  Google Scholar 

  52. Ron, H. and Rubinstein, I., Langmuir, 1994, vol. 10, pp. 4566–4573.

    Article  Google Scholar 

  53. Choi, M., Jo, K., and Yang, H., J. Electrochem. Sci. Technol., 2012, vol. 3, pp. 24–28.

    Article  Google Scholar 

  54. Irwin, M.D., Liu, J., Leever, B.J., Servaites, J.D., et al., Langmuir, 2010, vol. 26, pp. 2584–2591.

    Article  Google Scholar 

  55. Markovich, I. and Mandler, D., J. Electroanal. Chem., 2000, vol. 484, pp. 194–202.

    Article  Google Scholar 

  56. Hillebrandt, H. and Tanaka, M., J. Phys. Chem. B, 2001, vol. 105, pp. 4270–4276.

    Article  Google Scholar 

  57. Markovich, I. and Mandler, D., J. Electroanal. Chem., 2001, vol. 500, pp. 453–460.

    Article  Google Scholar 

  58. Fang, A., Ng, H.T., and Li, F.Y., Biosens. Bioelectron., 2003, vol. 19, pp. 43–49.

    Article  Google Scholar 

  59. Hedges, D.H.P., Richardson, D.J., and Russell, D.A., Langmuir, 2004, vol. 20, pp. 1901–1908.

    Article  Google Scholar 

  60. Ruan, C., Yang, L., and Li, Y., Anal. Chem., 2002, vol. 74, pp. 4814–4820.

    Article  Google Scholar 

  61. Chockalingam, M., Darwish, N., Le Saux, G., and Gooding, J.J., Langmuir, 2011, vol. 27, pp. 2545–2552.

    Article  Google Scholar 

  62. Yang, L. and Li, Y., Biosens. Bioelectron., 2005, vol. 20, pp. 1407–1416.

    Article  Google Scholar 

  63. Hong, B.J., Shim, J.Y., Oh, S.J., and Park, J.W., Langmuir, 2003, vol. 19, pp. 2357–2365.

    Article  Google Scholar 

  64. Santos, G., Cavallari, M.R., Fonseca, F.J., and Pereira, L., J. Iran. Chem. Soc., 2015, vol. 10, no. 1, pp. 7–12.

    Google Scholar 

  65. Lee, H.S., Cho, J.H., Kim, W.K., Lee, J.L., and Cho, K., Electrochem. Solid State Lett., 2007, vols. 10–8, pp. H239–H242.

    Article  Google Scholar 

  66. Khan, M.Z.H., Nakanishi, T., and Osaka, T., Sens. Lett., 2011, vol. 9, p. 1849.

    Article  Google Scholar 

  67. So, S.K., Choi, W.K., Cheng, C.H., Leung, L.M., et al., Appl. Phys. A: Mater. Sci. Process., 1999, vol. 68, pp. 447–450.

    Article  Google Scholar 

  68. Seo, Y.J. and Lee, W.S., Microelectron. Eng., 2004, vol. 75, pp. 149–154.

    Article  Google Scholar 

  69. Nüesch, F., Rothberg, L.J., Forsythe, E.W., Le, Q.T., et al., Appl. Phys. Lett., 1999, vol. 74, pp. 880–882.

    Article  Google Scholar 

  70. Ishida, T., Kobayashi, H., and Nakato, Y., J. Appl. Phys., 1993, vol. 73, pp. 4344–4350.

    Article  Google Scholar 

  71. Hatton, R.A., Day, S.R., Chesters, M.A., and Willis, M.R., Thin Solid Films, 2001, vol. 394, pp. 291–296.

    Article  Google Scholar 

  72. Hill, I.G., Rajagopal, A., Hu, Y., and Kahn, A., Appl. Phys. Lett., 1998, vol. 73, p. 662.

    Article  Google Scholar 

  73. Baikie, I.D., Venderbosch, E., Meyer, J.A., and Estrup, P.J.Z., Rev. Sci. Instrum., 1991, vol. 62, pp. 725–734.

    Article  Google Scholar 

  74. Campbell, I.H., Rubin, S., Zawodzinski, T.A., Kress, D.D., et al., Phys. Rev. B, 1996, vol. 54, p. R14321.

    Article  Google Scholar 

  75. Park, C.Y., Lee, J.H., and Choi, B.H., Org. Electron., 2013, vol. 14, no. 12, pp. 3172–3179.

    Article  Google Scholar 

  76. Lu, H.T. and Yokoyama, M., J. Cryst. Growth, 2004, vol. 260, pp. 186–190.

    Article  Google Scholar 

  77. Liu, G., Kerr, J.B., and Johnson, S., Synth. Met., 2004, vol. 144, pp. 1–6.

    Article  Google Scholar 

  78. Kim, C., Lee, B., Yang, H.J., Lee, H.M., et al., J. Korean Phys. Soc., 2005, vol. 47, pp. S417–S421.

  79. Li, C.N., Kwong, C.Y., Djurisic, A.B., Lai, P.T., et al., Thin Solid Films, 2005, vol. 477, pp. 57–62.

    Article  Google Scholar 

  80. Kim, J.S., Cacialli, F., Cola, A., Gigli, G., et al., Appl. Phys. Lett., 1999, vol. 75, pp. 19–21.

    Article  Google Scholar 

  81. Yu, H.Y., Feng, X.D., Grozea, D., Lu, Z.H., et al., Appl. Phys. Lett., 2001, vol. 78, pp. 2595–2597.

    Article  Google Scholar 

  82. Venkatesan, M., McGee, S., and Mitra, U., Thin Solid Films, 1989, vol. 170, p. 151.

    Article  Google Scholar 

  83. Huang, C.J., Su, Y.K., and Wu, S.L., Mater. Chem. Phys., 2004, vol. 84, p. 146.

    Article  Google Scholar 

  84. Nishimura, E., Ohkawa, H., Song, P.K., and Shigesato, Y., Thin Solid Films, 2003, vol. 445, p. 235.

    Article  Google Scholar 

  85. Chiou, B.-S. and Lee, J.-H., J. Mater. Sci.: Mater. Electron., 1996, vol. 7, no. 3, pp. 241–246.

    Google Scholar 

  86. Patnaik, P., Handbook of Inorganic Chemicals, NewYork: McGraw Hill, 2002.

    Google Scholar 

  87. Tsai, T.-H. and Wu, Y.-F., J. Electrochem. Soc., 2006, vol. 153, pp. C86–C90.

    Article  Google Scholar 

  88. Wantz, G., Hirsch, L., Huby, N., Vignau, L., et al., Thin Solid Films, 2005, vol. 485, pp. 247–251.

    Article  Google Scholar 

  89. Bardshaw, G. and Hughes, A.J., Thin Solid Films, 1976, vol. 33, no. 20, pp. L5–L8.

    Article  Google Scholar 

  90. Nguyen, T.P., Le Rendu, P., Dinh, N.N., Fourmigue, M., et al., Synth. Met., 2003, vol. 138, pp. 229–232.

    Article  Google Scholar 

  91. Kim, J.S., Friend, R.H., and Cacialli, F., Appl. Phys. Lett., 1999, vol. 74, p. 3084.

    Article  Google Scholar 

  92. Dang, M.T., Lefebvre, J., and Wuest, J.D., ACS Sustainable Chem. Eng., 2015, vol. 3, no. 12, pp. 3373–3381.

    Article  Google Scholar 

  93. Song, W., So, S.K., and Cao, L., Appl. Phys. A: Mater. Sci. Process., 2001, vol. 72, pp. 361–365.

    Article  Google Scholar 

  94. Chaney, J.A., Koh, S.E., Dulcey, C.S., and Pehrsson, P.E., Appl. Surf. Sci., 2003, vol. 218, pp. 259–267.

    Article  Google Scholar 

  95. Steuber, F., Staudigel, J., Stössel, M., Simmerer, J., et al., Appl. Phys. Lett., 1999, vol. 74, pp. 3558–3560.

    Article  Google Scholar 

  96. Kwong, C.Y., Djuriši, A.B., Chui, P.C., and Chan, W.K., Proc. SPIE, 2004, vol. 5215, pp. 153–160.

    Article  Google Scholar 

  97. Wang, P., Wu, I.W., Tseng, W.H., and Chen, M.H., Appl. Phys. Lett., 2011, vol. 98, p. 173302.

    Article  Google Scholar 

  98. Salehi, A., Thin Solid Films, 1999, vol. 324, pp. 214–218.

    Article  Google Scholar 

  99. Huber, W., Titrations in Nonaqueous Solvents, New York: Academic, 1967.

    Google Scholar 

  100. Hoheisel, M., Mitwalsky, A., and Mrotzek, C., Phys. Status Solidi, 1991, vol. 123, pp. 461–472.

    Article  Google Scholar 

  101. Inoue, M., Matsuoka, T., Fujita, Y., and Abe, A., Jpn. J. Appl. Phys., 1989, vol. 28, p. 274.

    Article  Google Scholar 

  102. Ratcheva, T. and Nanva, M., Thin Solid Films, 1986, vol. 141, pp. L87–L89.

  103. Calahorra, Z., Minami, E., White, R.M., and Muller, R.S., J. Electrochem. Soc., 1989, vol. 136, pp. 1839–1840.

    Article  Google Scholar 

  104. Li, F., Tang, H., Shinar, J., Resto, O., et al., Appl. Phys. Lett., 1997, vol. 70, p. 2741.

    Article  Google Scholar 

  105. Koh, S.E., McDonald, K.D., Holt, D.H., Dulcey, C.S., et al., Langmuir, 2006, vol. 22, pp. 6249–6255.

    Article  Google Scholar 

  106. Gardonio, S., Gregoratti, L., Scaini, D., Castellarin-Cudia, C., et al., Org. Electron., 2008, vol. 9, pp. 253–261.

    Article  Google Scholar 

  107. Oh, S., Jung, H., Kim, Y-H., Kim, M., et al., Microelectron. Eng., 2013, vol. 103, pp. 173–176.

    Article  Google Scholar 

  108. Mammana, S.S., Greatti, A., Luiz, F.H., da Costa, F.I., et al., Thin Solid Films, 2014, vol. 567, pp. 20–31.

    Article  Google Scholar 

  109. Khan, M.Z.H., Nakanishi, T., and Osaka, T., Surf. Coat. Technol., 2014, vol. 244, pp. 189–193.

    Article  Google Scholar 

  110. Armstrong, N.R., Veneman, P.A., Ratcliff, E., Placencia, D., et al., Acc. Chem. Res., 2009, vol. 42, pp. 1748–1757.

    Article  Google Scholar 

  111. Ganzorig, C., Kwak, K.J., Yagi, K., and Fujihira, M., Appl. Phys. Lett., 2001, vol. 79, p. 272.

    Article  Google Scholar 

  112. Ho, P.K.H., Granström, M., Friend, R.H., and Greenham, N.C., Adv. Mater., 1998, vol. 10, pp. 769–774.

    Article  Google Scholar 

  113. Zuppiroli, L., Si-Ahmed, L., Kamaras, K., Nüesch, F., et al., Eur. Phys. J. B, 1999, vol. 11, pp. 505–512.

    Article  Google Scholar 

  114. Appleyard, S.F.J., Day, S.R., Pickford, R.D., and Willis, M.R., J. Mater. Chem., 2010, vol. 10, pp. 169–173.

    Article  Google Scholar 

  115. Jee, S.H., Kim, S.H., Ko, J.H., and Yoon, Y.S., J. Korean Phys. Chem., 2006, vol. 49, pp. 2034–2039.

    Google Scholar 

  116. Shaya, O., Einati, H., Fishelson, N., Shacham-Diamand, Y., et al., Appl. Phys. Lett., 2010, vol. 97, p. 053501.

    Article  Google Scholar 

  117. Wu, G.M., Lin, H.H., and Lu, H.C., Vacuum, 2008, vol. 82, pp. 1371–1374.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Z. H. Khan.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.Z.H. Pretreatment of ITO electrode and its physiochemical properties: Towards device fabrication. Surf. Engin. Appl.Electrochem. 52, 547–564 (2016). https://doi.org/10.3103/S1068375516060090

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375516060090

Keywords

Navigation