Skip to main content
Log in

Photocatalytic properties of TiO2 nanotubes doped with Ag, Au and Pt or covered by Ag, Au and Pt nanodots

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Titania nanotube arrays have been prepared by anodic oxidation of titanium foils in an electrolyte solution containing a mixture of hydrofluoric acid, ethylene glycol, and phosphoric acid. The initially amorphous nanotubes were found to crystalize in an anatase phase upon thermal treatment at 500°C. Anatase crystalline phase showed a significant improvement in the photocatalytic properties of the prepared samples, which was evaluated by studying their efficiency towards Rhodamine B dye degradation. Additionally, the effect of doping titania nanotubes with noble metals (e.g. Ag, Pt, and Au), or covering their surface with noble metal nanoparticles, was studied regarding their capabilities towards the photocatalytic degradation of Rhodamine B dye. A positive effect when samples were doped with Ag was revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Uchida, S., Chiba, R., Tomiha, M., Masaki, N., and Shira, M., Application of titania nanotubes to a dyesensitized solar cell, Electrochemistry, 2002, vol. 70, no. 6, pp. 418–420.

    Google Scholar 

  2. Adachi, M., Murata, Y., Okada, I., and Yoshikawa, S., Formation of titania nanotubes and applications for dye-sensitized solar cells, J. Electrochem. Soc., 2003, vol. 150, no. 8, pp. 488–493.

    Article  Google Scholar 

  3. Frank, A.J., Kopidakis, N., and Lagemaat, J., Electrons in nanostructured TiO2 solar cells: Transport, recombination and photovoltaic properties, Coordin. Chem. Rev., 2004, vol. 248, nos. 13–14, pp. 1165–1179.

    Article  Google Scholar 

  4. Adachi, M., Murata, Y., Harada, M., and Yoshikawa, S., Formation of titania nanotubes with high photo-catalytic activity, Chem. Lett., 2000, vol. 29, no. 8, pp. 942–944.

    Article  Google Scholar 

  5. Chu, S.Z., Inoue, S., Wada, K., Li, D., Haneda, H., and Awatsu, S., Highly porous (TiO2-SiO2-TeO2)/Al2O3/TiO2 composite nanostructures on glass with enhanced photocatalysis fabricated by anodization and sol-gel process, J. Phys. Chem. B, 2003, vol. 107, no. 27, pp. 6586–6589.

    Article  Google Scholar 

  6. Zhang, H., Zhao, H., Zhang, S., and Quan, X., Photoelectrochemical manifestation of photoelectron transport properties of vertically aligned nano-tubular TiO2 photoanodes, Phys. Chem., 2008, vol. 9, no. 1, pp. 117–123.

    Google Scholar 

  7. Kontos, A.G., Kontos, A.I., Tsoukleris, D.S., Likodimos, V., Kunze, J., Schmuki, P., and Falaras, P., Photo-induced effects on self-organized TiO2 nanotube arrays: The influence of surface morphology, Nanotechnology, 2009, vol. 20, no. 4, pp. 045603–045612.

    Article  Google Scholar 

  8. Mor, G.K., Shankar, K., Varghese, O.K., and Grimes, C.A., Photoelectrochemical properties of titania nanotubes, J. Mater. Res., 2004, vol. 19, no. 10, pp. 2989–2996.

    Article  Google Scholar 

  9. Lakshminarasimhan, N., Bae, E., and Choi, W., Enhanced photocatalytic production of H2 on mesoporous TiO2 prepared by template-free method: Role of interparticle charge transfer, J. Phys. Chem. C, 2007, vol. 111, no. 42, pp. 15244–15250.

    Article  Google Scholar 

  10. Mor, G.K., Prakasam, H.E., Varghese, O.K., Shankar, K., and Grimes, C.A., Vertically oriented Ti-Fe-O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis, Nano Lett., 2007, vol. 7, no. 8, pp. 2356–2364.

    Article  Google Scholar 

  11. Varghese O.K., Gong, D., Paulose, M., Ong, K.G., and Grimes, C.A., Hydrogen sensing using titania nanotubes, Sensor Actuat. B-Chem., 2003, vol. 93, nos. 1–3, pp. 338–344.

    Article  Google Scholar 

  12. Manno, D., Micocci, G., Rella, R., Serra, A., Taurino, A., and Tepore, A., Titanium oxide thin films for NH3 monitoring: structural and physical characterizations, J. Appl. Phys., 1997, vol. 82, no. 1, pp. 54–59.

    Article  Google Scholar 

  13. Oh, S.H., Finõnes, R.R., Daraio, C., Chen, L.H., and Jin, S., Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes, Biomaterials, 2005, vol. 26, no. 24, pp. 4938–4943.

    Article  Google Scholar 

  14. Tsuchiya, H., Macak, J.M., Mueller, L., Kunze, J., Müller, F., Greil, P., Virtanen, S., and Schmuki, P., Hydroxyapatite growth on anodic TiO2 nanotubes, J. Biomed. Mater. Res., 2006, vol. 77, no. 3, pp. 534–541.

    Article  Google Scholar 

  15. Mei, Y., Huang, G., Solovev, A.A., Ureña, E.B., Mönch, I., Ding, F., Reindl, T., Fu, R.K.Y., Chu, P.K., and Schmidt, O.G., Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers, Adv Mater., 2008, vol. 20, no. 21, pp. 4085–4090.

    Article  Google Scholar 

  16. Gao, W., Sattayasamitsathit, S., Orozco, J., and Wang, J., Highly efficient catalytic microengines: Template electrosynthesis of polyaniline/platinum microtubes, J. Am. Chem. Soc., 2011, vol. 133, no. 31, pp. 11862–11864.

    Article  Google Scholar 

  17. Gao, W., Pei, A., and Wang, J., Water-driven micromotors, ACS Nano, 2012, vol. 6, no. 9, pp. 8432–8438.

    Article  Google Scholar 

  18. Gao, W., Uygun, A., and Wang, J., Hydrogen-bubble-propelled zinc-based microrockets in strongly acidic media, J. Am. Chem. Soc., 2012, vol. 134, no. 2, pp. 897–900.

    Article  Google Scholar 

  19. Hong, Y., Diaz, M., Córdova-Figueroa, U.M., and Sen, A., Light-driven titanium-dioxide-based reversible microfireworks and micromotor/micropump systems, Advanced Funct. Mater., 2010, vol. 20, no. 10, pp. 1568–1576.

    Article  Google Scholar 

  20. Giudicatti, S., Marz, S.M., Soler, L., Madani, A., Jorgensen, M.R., Sanchez, S., and Schmidt, O.G., Photoactive rolled-up TiO2 microtubes: Fabrication, characterization and applications, J. Mater. Chem. C, 2014, vol. 2, no. 29, pp. 5892–5901.

    Article  Google Scholar 

  21. Sanchez, S., Solovev, A.A., Schulze, S., and Schmidt, O.G., Controlled manipulation of multiple cells using catalytic microbots, Chem. Commun., 2011, vol. 47, no. 2, pp. 698–700.

    Article  Google Scholar 

  22. Kagan, D., Campuzano, S., Balasubramanian, S., Kuralay, F., Flechsig, G.-U., and Wang, J., Functionalized micromachines for selective and rapid isolation of nucleic acid targets from complex samples, Nano Lett., 2011, vol. 11, no. 5, pp. 2083–2087.

    Article  Google Scholar 

  23. Orozco, J., Campuzano, S., Kagan, D., Zhou, M., Gao, W., and Wang, J., Dynamic isolation and unloading of target proteins by aptamer-modified microtransporters, Anal. Chem., 2011, vol. 83, no. 20, pp. 7962–7969.

    Article  Google Scholar 

  24. Garcia, M., Orozco, J., Guix, M., Gao, W., Sattayasamitsathit, S., Escarpa, A., Merkoci, A., and Wang, J., Micromotor-based lab-on-chip immunoassays, Nano-scale, 2013, vol. 5, no. 4, pp. 1325–1331.

    Google Scholar 

  25. Balasubramanian, S., Kagan, D., Jack Hu, C.-M., Campuzano, S., Lobo-Castañon, M.J., Lim, N., Kang, D.Y., Zimmerman, M., Zhang, L., and Wang, J., Micromachine-enabled capture and isolation of cancer cells in complex media, Angew. Chem. Int. Edit., 2011, vol. 50, no. 18, pp. 4161–4164.

    Article  Google Scholar 

  26. Campuzano, S., Orozco, J., Kagan, D., Guix, M., Gao, W., Sattayasamitsathit, S., Claussen, J.C., Merkoçi, A., and Wang, J., Bacterial isolation by lectin-modified microengines, Nano Lett., 2011, vol. 12, no. 1, pp. 396–401.

    Article  Google Scholar 

  27. Soler, L., Magdanz, V., Fomin, V.M., Sanchez, S., and Schmidt, O.G., Self-propelled micromotors for cleaning polluted water, ACS Nano., 2013, vol. 7, no. 11, pp. 9611–9620.

    Article  Google Scholar 

  28. Kagan, D., Calvo-Marzal, P., Balasubramanian, S., Sattayasamitsathit, S., Manesh, K.M., Flechsig, G.-U., and Wang, J., Chemical sensing based on catalytic nanomotors: motion-based detection of trace silver, J. Am. Chem. Soc., 2009, vol. 131, no. 34, pp. 12082–12083.

    Article  Google Scholar 

  29. Wu, J., Balasubramanian, S., Kagan, D., Manesh, K.M., Campuzano, S., and Wang, J., Motion-based DNA detection using catalytic nanomotors, Nature Commun., 2010, vol. 1, no. 36, pp. 1–6.

    Article  Google Scholar 

  30. Foll, H., Langa, S., Carstensen, J., Christophersen, M., and Tiginyanu, I.M., Pores in III–V semiconductors, Adv. Mater., 2003, vol. 15, no. 3, pp. 183–198.

    Article  Google Scholar 

  31. Ohsaka, T., Izumi, F., and Fujiki, Y., Raman spectrum of anatase TiO2, J. Raman Spectrosc., 1978, vol. 7, no. 6, pp. 321–324.

    Article  Google Scholar 

  32. Anpo, M. and Kamat, P.V., Environmentally Benign Photocatalysts: Applications of Titanium Oxide-based Materials New York, Dordrecht, Heidelberg, London: Eds., Springer, 2010.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihail Enachi.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enachi, M., Guix, M., Braniste, T. et al. Photocatalytic properties of TiO2 nanotubes doped with Ag, Au and Pt or covered by Ag, Au and Pt nanodots. Surf. Engin. Appl.Electrochem. 51, 3–8 (2015). https://doi.org/10.3103/S1068375515010044

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375515010044

Keywords

Navigation