Skip to main content
Log in

Endophytes from maize with plant growth promotion and biocontrol activity under drought stress

  • Microbiology
  • Published:
Russian Agricultural Sciences Aims and scope

Abstract

In the present study, 39 endophytic bacteria were isolated from different crops with main focus on maize roots and seeds. Endophytes were screened for drought stress tolerance, plant growth promoting (PGP) traits and antifungal activity. Out of 39 isolates, 32 could show drought tolerance up to–1.02 matric potential (MPa) and exhibited most of the plant growth promoting traits. But, only five isolates could show antagonistic activity against plant fungal pathogens. Based on the results, 10 promising isolates namely FTR, NFTR, FMZR9, FMZR2, MZ30V92, MRC12, MRC31, MRC33, MRC41 and MRR2 were selected and identified using biochemical and 16S rDNA gene sequencing as Pseudomonas aeruginosa (strains FTR and NFTR), Pseudomonas monteilii (strain FMZR2), Pseudomonas putida (strain FMZR9), Acitenobacter brumalii (strain MZ30V92), Enterobacter asburiae (strain MRC12), Sinorhizobium meliloti (strain MRC31), Pseudomonas thivervalensis (strain MRC33), Pseudomonas fulva (strain MRC41), and Pseudomonas lini (strain MRR2). Further, at–1.02 MPa all the 10 isolates showed PGP traits, and 3 isolates (FTR, NFTR and MRC12) showed antifungal activity. Thus, indicating that drought tolerant plant growth promoting antagonistic endophytic bacteria (PGPAE) helps in plant growth and disease management under drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zinniel, D.K., Lambrecht, P., Harris, N.B., Feng, Z., Kuczmarski, D., Higley, P., et al., Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants, App. Environ. Microbiol., 2002, vol. 68, pp. 2198–2208.

    Article  CAS  Google Scholar 

  2. Kumar, V., Kumar, A., Pandey, K.D., and Roy, B.K., Isolation and characterization of bacterial endophytes from the roots of Cassia tora L., Ann. Microbiol., 2014, vol. 65, pp. 1391–1399.

    Article  Google Scholar 

  3. Marella, S., Bacterial endophytes in sustainable crop production: Applications, recent developments and challenges ahead, Int. J. Life Sci. Res., 2014, vol. 2, pp. 46–56.

    Google Scholar 

  4. Munters, A.R., The foliar bacterial endophyte community in native Pinus radiata: A role for protection against fungal disease?, Dissertation, Uppasala University, 2014.

    Google Scholar 

  5. Hardoim, P.R., Overbeek, V., Leo, S., and Elsas, D.J.V., Properties of bacterial endophytes and their proposed role in plant growth, Trends Microbiol., 2008, vol. 16, no. 10, pp. 463–471.

    Article  CAS  PubMed  Google Scholar 

  6. De Bruijn, F.J., Stoltzfus, J.R., So, R., Malarvithi, P.P., and Ladha, J.K., Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen, in Opportunities for Biological Nitrogen Fixation in Rice and Other Non-Legumes, Springer, 1997, pp. 25–36.

    Chapter  Google Scholar 

  7. Urquiaga, S., Cruz, K.H., and Boddey, R.M., Contribution of nitrogen fixation to sugar cane: Nitrogen-15 and nitrogen-balance estimates, Soil. Sci. Soc. Am. J., 1992, vol. 56, no. 1, pp. 105–114.

    Article  Google Scholar 

  8. Surette, M.A., Sturz, A.V., Lada, R.R., and Nowak, J., Bacterial endophytes in processing carrots (Daucus carota L. var. sativus): Their localization, population density, biodiversity and their effects on plant growth, Plant Soil, 2003, vol. 253, no. 2, pp. 381–390.

    Article  CAS  Google Scholar 

  9. Cheplick, G.P. and Faeth, S.H., Ecology and Evolution of the Grass-Endophyte Symbiosis, Oxford University Press, Oxford, 2009.

    Book  Google Scholar 

  10. Mrabet, M., Mnasri, B., Romdhan, S.B., Laguerre, G., Aouani, M.E., and Mhamdi, R., Agrobacterium strains isolated from root nodules of common bean specifically reduce nodulation by Rhizobium gallicum, FEMS Microb. Ecol., 2006, vol. 56, no. 2, pp. 304–309.

    Article  CAS  Google Scholar 

  11. Liu, J., Wang, E.T., Ren, D.W., and Chen, W.X., Mixture of endophytic Agrobacterium and Sinorhizobium meliloti strains could induce nonspecific nodulation on some woody legumes, Arch. Microbiol., 2010, vol. 192, no. 3, pp. 229–234.

    Article  CAS  PubMed  Google Scholar 

  12. Gustavo, S., Gabriel, M.H., Ma, del C., Orozco, M., and Glick, B.R., Plant growth promoting bacterial endophytes, Microbiol. Res., 2016, vol. 183, no. 1, pp. 92–99.

    Google Scholar 

  13. Nagaraj Kumar, M., Bhaskaran, R., and Velazhahan, R., Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen, Microbiol. Res., 2004, vol. 159, no. 1, pp. 73–81.

    Article  CAS  Google Scholar 

  14. Rosenblueth, M. and Martínez-Romero, E., Bacterial endophytes and their interactions with hosts, Mol. Plant Microbe, 2006, vol. 19, no. 8, pp. 827–837.

    Article  CAS  Google Scholar 

  15. Long, H.H., Schmidt, D.D., and Baldwin, I.T., Native bacterial endophytes promote host growth in a speciesspecific manner; phytohormone manipulations do not result in common growth responses, PLoS ONE, 2008, vol. 3, no. 7, pp. e2702.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ryan, R.P., Germaine, K., Franks, A., Ryan, D.J., and Dowling, D.N., Bacterial endophytes: Recent developments and applications, FEMS Microbiol. Lett., 2008, vol. 278, no. 1, pp. 1–9.

    Article  CAS  PubMed  Google Scholar 

  17. Brader, G., Compant, S., Mitter, B., Trognitz, F., and Sessitsch, A., Metabolic potential of endophytic bacteria, Curr. Opin. Biotechnol., 2014, vol. 27, no. 100, pp. 30–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Naveed, M., Mitter, B., Reichenauer, T.G., Wieczorek, K., and Sessitsch, A., Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. fd17, Environ. Exp. Bot., 2014, vol. 97, no. 1, pp. 30–39.

    Article  CAS  Google Scholar 

  19. Compant, S., Reiter, B., Sessitsch, A., Nowak, J., Clement, C., and Ait Barka, E., Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN, Appl. Environ. Microbiol., 2005, vol. 71, no. 4, pp. 1685–1693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rajkumar, M., Nagendran, R., Lee, K.J., Lee, W.H., and Kim, S.Z., Influence of plant growth promoting bacteria and Cr 6+ on the growth of Indian mustard, Chemosphere, 2006, vol. 62, no. 5, pp. 741–748.

    Article  CAS  PubMed  Google Scholar 

  21. Kusari, S., Hertweck, C., and Spiteller, M., Chemical ecology of endophytic fungi: Origins of secondary metabolites, Chem. Biol., 2012, vol. 19, no. 7, pp. 792–798.

    Article  CAS  PubMed  Google Scholar 

  22. Bianco, P.A., Marzachi, C., Musetti, R., and Naor, V., Perspectives of endophytes as biocontrol agents in the management of phytoplasma diseases, Phytopathog., Mollicutes, 2013, vol. 3, no. 1, pp. 56–59.

    Article  Google Scholar 

  23. Berg, G., Krechel, A., Ditz, M., Sikora, R.A., Ulrich, A., and Hallmann, J., Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi, FEMS. Microbiol. Ecol., 2005, vol. 51, no. 2, pp. 215–229.

    Article  CAS  PubMed  Google Scholar 

  24. Schulz, B. and Boyle, C., The endophytic continuum, Mycol. Res., 2005, vol. 109, no. 6, pp. 661–686.

    Article  PubMed  Google Scholar 

  25. Elbeltagy, A., Nishioka, K., Suzuki, H., Sato, T., Sato, Y.I., Morisaki, H., and Minamisawa, K., Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties, Soil Biol. Biochem., 2000, vol. 46, no. 3, pp. 617–629.

    Google Scholar 

  26. Dawwam, G.E., Elbeltagy, A., Emara, H.M., Abbas, I.H., and Hassan, M.M., Beneficial effect of plant growth promoting bacteria isolated from the roots of potato plant, Ann. Agri. Sci., 2013, vol. 58, no. 2, pp. 195–201.

    Google Scholar 

  27. Sandhya, V., Grover, M., Reddy, G., and Venkateswarlu, B., Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45, Biol. Fert. Soils, 2009, vol. 46, no. 1, pp. 17–26.

    Article  CAS  Google Scholar 

  28. Fiske, C.H. and Subbarow, Y., A colorimetric determination of phosphorous, J. Biol. Chem., 1925, vol. 66, no. 1, pp. 375–400.

    CAS  Google Scholar 

  29. Gordon, S.A. and Weber, R.P., Colorimetric estimation of indole acetic acid, Plant Physiol., 1951, vol. 26, no. 1, pp. 192–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bradford, M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, nos 1-2, pp. 248–258.

    Article  CAS  PubMed  Google Scholar 

  31. Schwyn, B. and Neilands, J.B., Universal chemical assay for the detection and determination of siderophores, Anal. Biochem., 1987, vol. 160, no. 1, pp. 47–56.

    Article  CAS  PubMed  Google Scholar 

  32. Bakker, A.W. and Schippers, B., Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp-mediated plant growth stimulation, Soil Biol. Biochem., 1987, vol. 19, no. 4, pp. 451–457.

    Article  CAS  Google Scholar 

  33. Holbrook, A.A., Edge, W.J.W., and Fred, B., Spectrophotometric method for determination of gibberellic acid, Adv. Chem. Ser., 1961, vol. 28, no. 1, pp. 159–167.

    Article  Google Scholar 

  34. Barbara, J.T. and Wong, T.Y., Cytokinins in Azotobacter vinelandii culture medium, Appl. Environ. Microbiol., 1989, vol. 55, no. 1, pp. 266–267.

    Google Scholar 

  35. Dworkin, M. and Foster, J., Experiments with some microorganisms which utilize ethane and hydrogen, J. Bacteriol., 1958, vol. 75, no. 5, pp. 592–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, S.M., Sha, C.Q., Li, J., and Zhao, X.Y., Isolation and characterization of antifungal endophytic bacteria from soybean, Arch. Microbiol., 2008, vol. 35, no. 10, pp. 1593–1599.

    Google Scholar 

  37. Lin, T., Longfei, Z., Yazhen, Y., Qinlan, G., and Mingfu, G., Potential of endophytic bacteria isolated from Sophora alopecuroides nodule in biological control against Verticillium wilt disease, Crop Sci., 2013, vol. 7, no. 1, pp. 139–146.

    Google Scholar 

  38. Chen, W.P. and Kuo, T.T., A simple and rapid method for the preparation of gram negative bacterial genomic DNA, Nucleic Acids Res., 1993, vol. 21, no. 9, p. 2260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Qadri, M., Johri, S., Shah, B.A., Khajuria, A., Sidiq, T., Lattoo, S.K., et al., Identification and bioactive potential of endophytic fungi isolated from selected plants of the Western Himalayas, Springer Plus, 2013, vol. 2, no. 8, pp. 1–14.

    Google Scholar 

  40. Lamb, T.G., Tonkyn, D.W., and Kuepfer, D.A., Movement of Pseudomonas aureofaciens from the rhizosphere to aerial plant tissue, Can. J. Microbiol., 1996, vol. 42, no. 11, pp. 1112–1120.

    Article  CAS  Google Scholar 

  41. Sandhya, V., Ali, S.Z., Grover, M., Reddy, G., and Venkateswarlu, B., Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress, Plant Growth Regul., 2010, vol. 62, no. 1, pp. 21–30.

    Article  CAS  Google Scholar 

  42. Tank, N. and Saraf, M., Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants, J. Plant Interact., 2010, vol. 5, no. 1, pp. 51–58.

    Article  CAS  Google Scholar 

  43. Ali, S.Z., Sandhya, V., and Rao, L.V., Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp., Ann. Microbiol., 2014, vol. 64, no. 2, pp. 493–502.

    Article  CAS  Google Scholar 

  44. Potts, M., Desiccation tolerance of prokaryotes, Microbiol. Rev., 1994, vol. 58, no. 4, pp. 755–805.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Khalid, A., Arshad, M., and Zahir, Z.A., Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat, J. Appl. Microbiol., 2004, vol. 96, no. 3, pp. 473–480.

    Article  CAS  PubMed  Google Scholar 

  46. Frey-Klett, P., Chavatte, M., Clausse, M.L., Courrier, S., Roux, C.L., et al., Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads, New Phytol., 2005, vol. 165, no. 1, pp. 317–328.

    Article  PubMed  Google Scholar 

  47. Leveau, J.H. and Lindow, S.E., Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290, App. Environ. Microbiol., 2005, vol. 71, no. 5, pp. 2365–2371.

    Article  CAS  Google Scholar 

  48. Khan, Z. and Doty, S.L., Characterization of bacterial endophytes of sweet potato plants, Plant Soil, 2009, vol. 322, no. 1, pp. 197–207.

    Article  CAS  Google Scholar 

  49. He, H., Ye, Z., Yang, D., Yan, J., Xiao, L., Zhong, T., et al., Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus, Chemosphere, 2013, vol. 90, no. 6, pp. 1960–1965.

    Article  CAS  PubMed  Google Scholar 

  50. Armando, C.F.D., Francisco, E.C.C., Fernando, D.A., Paulo, T.L., Manoel, A.T., Laura, C.A., Welington, L.A., Joaao, L.A., and Itamar, S.M., Isolation of micropropagated strawberry endophytic bacteria and assessment of their potential for plant growth promotion, World J. Microbiol. Biotechnol., 2009, vol. 25, no. 2, pp. 189–195.

    Article  Google Scholar 

  51. Mehta, S. and Nautiyal, C.S., An efficient method for qualitative screening of phosphate solubilizing bacteria, Curr. Microbiol., 2001, vol. 43, no. 1, pp. 51–56.

    Article  CAS  PubMed  Google Scholar 

  52. Okon, Y. and Labandera-Gonzalez, C.A., Agronomic applications of Azospirillum: An evaluation of 20 years’ worldwide field inoculation, Soil Biol. Biochem., 1994, vol. 26, no. 12, pp. 1591–1601.

    Article  CAS  Google Scholar 

  53. Gururani, M., Upadhyaya, C., Baskar, V., Venkatesh, J., Nookaraju, A., and Park, S., Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance, J. Plant Growth Regul., 2012, vol. 32, no. 2, pp. 245–258.

    Article  Google Scholar 

  54. Ji, S.H., Gururani, M.A., and Chun, S.C., Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars, Microbiol. Res., 2014, vol. 169, no. 1, pp. 83–98.

    Article  CAS  PubMed  Google Scholar 

  55. Gupta, P., Puniya, B., Barun, S., Asthana, M., and Kumar, A., Isolation and characterization of endophytes from different plants: Effects on growth of Pennisetum typhoides, Biosci. Biotechnol. Res. Asia, 2014, vol. 11, no. 1, pp. 223–34.

    Article  Google Scholar 

  56. Duffy, B.K. and Defago, G., Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains, Appl. Environ. Microb., 1999, vol. 65, no. 6, pp. 2429–2438.

    CAS  Google Scholar 

  57. Jasim, B., Jimtha, C.J., Jyothis, M., and Radhakrishnan, E.K., Plant growth promoting potential of endophytic bacteria isolated from Piper nigrum, Plant Growth Regul., 2013, vol. 71, no. 1, pp. 1–11.

    Article  CAS  Google Scholar 

  58. Van Peer, R., Punte, H.L., de Weger, L.A., and Schippers, B., Characterization of root surface and endorhizosphere pseudomonads in relation to their colonization of roots, App. Environ. Microbiol., 1990, vol. 56, no. 8, pp. 2462–2470.

    Google Scholar 

  59. Whipps, J.M., Microbial interactions and biocontrol in the rhizosphere, J. Exp. Bot., 2001, vol. 52, no. 1, pp. 487–511.

    Article  CAS  PubMed  Google Scholar 

  60. Pandey, P.K., Samanta, R., and Yadav, R.N.S., Plant beneficial endophytic bacteria from the ethnomedicinal Mussaenda roxburghii (Akshap) of Eastern Himalayan Province, India, Adv. Biol., 2015, vol. 2015, pp. 1–8. doi doi 10.1155/2015/580510

    Article  Google Scholar 

  61. Marulanda, A., Porcel, R., Barea, J.M., and Azcon, R., Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or droughtsensitive Glomus species, Microb Ecol., 2007, vol. 54, no. 3, pp. 543–552.

    Article  CAS  PubMed  Google Scholar 

  62. Ghanashyam, C. and Jain, M., Role of auxin-responsive genes in biotic stress responses, Plant Signal. Behav., 2009, vol. 4, no. 9, pp. 846–848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Boiero, L., Perrig, D., Masciarelli, O., Penna, C., Cassan, F., and Luna, V., Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications, Appl. Microbiol. Biotechnol., 2007, vol. 74, no. 4, pp. 874–880.

    Article  CAS  PubMed  Google Scholar 

  64. Jackson, M.B., Are plant hormones involved in root to shoot communication?, Adv. Bot. Res., 1993, vol. 19, no. 1, pp. 103–186.

    Article  CAS  Google Scholar 

  65. Ryu, C.M., Farag, M.A., Hu, C.H., Reddy, M.S., Kloepper, J.W., and Paré, P.W., Bacterial volatiles induce systemic resistance in Arabidopsis, Plant. Physiol., 2004, vol. 134, no. 3, pp. 1017–1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Saravanakumar, D., Kavino, M., Raguchander, T., Subbian, P., and Samiyappan, R., Plant growth promoting bacteria enhances water stress resistance in green gram plants, Acta Physiologiae Plant., 2011, vol. 33, no. 1, pp. 203–209.

    Article  CAS  Google Scholar 

  67. Singh, K., Nizam, S., Sinha, M., and Verma, P.K., Comparative transcriptome analysis of the necrotrophic fungus Ascochyta rabiei during oxidative stress: Insight for fungal survival in the host plant, PloS ONE, 2012, vol. 7, no. 3, p. e33128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Adam, Z., Chen, Q., Xu, R., Diange, A.E., Bromfield, E.S., and Tambong, J.T., Draft genome sequence of Pseudomonas simiae strain 2-36, an in vitro antagonist of Rhizoctonia solani and Gaeumannomyces graminis, Genome. Announc., 2015, vol. 3, no. 1, p. 1534–14.

    Article  Google Scholar 

  69. Ferraz, H.G.M., Milagres, E.A., Moreira, P.C., and Romeiro, R.S., Delivery methods of the antagonist Pseudomonas putida (UFV-0073) for the control of bacterial spot and bacterial speck of tomato, pp. 123–127.

  70. Yap, A.C., Teoh, W.Y., Chan, K.G., Sim, K.S., and Choo, Y.M., A new oxathiolane from Enterobacter cloacae, Nat. Prod. Res., 2015, vol. 29, no. 8, pp. 722–726.

    Article  CAS  PubMed  Google Scholar 

  71. Rani, C.U. and Rao, A.S., Antifungal properties exhibited by bacteria isolated from agriculturally cultivable soils and their antagonistic nature towards fungal phytopathogen suppression, Agric. Sci. Dig., 2016, vol. 36, no. 1, pp. 17–23.

    Google Scholar 

  72. Yaish, M.W., Antony, I., and Glick, B.R., Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance, A. van Leeuw J. Microb., 2015, vol. 107, no. 6, pp. 1519–1532.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sandhya.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandhya, V., Shrivastava, M., Ali, S.Z. et al. Endophytes from maize with plant growth promotion and biocontrol activity under drought stress. Russ. Agricult. Sci. 43, 22–34 (2017). https://doi.org/10.3103/S1068367417010165

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068367417010165

Keywords

Navigation