Skip to main content
Log in

RESONANT TWO-PHOTON-EXCITED LUMINESCENCE IN ZINC-PHOSPHATE OPTICAL GLASS DOPED WITH SODIUM URANATE

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

It was found that resonant two-photon-excited luminescence is observed in zinc-phosphate optical glass doped with sodium uranate with a concentration of 2.8%, excited by pulse-periodic radiation of gold vapor laser (λ = 627.8 nm). In this case, the wavelength of exciting laser radiation fell within the absorption band of zinc-phosphate optical glass. The average radiation power of the gold vapor laser was 0.2 W at a lasing pulse repetition rate of 10 kHz and a pulse duration of 15 ns. The peak intensity of focused laser radiation on the sample surface was ~5 × 106 W/cm2. The recorded spectrum of resonant two-photon-excited luminescence consisted of several bands in the green-orange spectral region. The efficiency of resonant two-photon-excited luminescence was about 10–3–10–4, which exceeds the efficiency of two-photon-excited luminescence observed under nonresonant conditions by one—two orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Bredikhin, V.I., Galanin, M.D., and Genkin, V.N., Two-photon absorption and spectroscopy, Sov. Phys. Usp., 1973, vol. 16, no.5, pp. 299–321. https://doi.org/10.1070/PU1973v016n03ABEH005183

    Article  ADS  Google Scholar 

  2. Agal’tsov, A.M., Gorelik, V.S., and Rakhmatullaev, I.A., Spectral, energy, and temporal characteristics of two-photon-excited fluorescence of ZnSe single crystal in the blue region of the spectrum, Semiconductors, 1997, vol. 31, no. 12, pp. 1228–1230. https://doi.org/10.1134/1.1187299

    Article  ADS  Google Scholar 

  3. Picot, A., D’Aleo, A., Baldeck, P.L., Grichine, A., Duperray, A., Andraud, C., and Maury, O., Long-lived two-photon excited luminescence of water-soluble europium complex: applications in biological imaging using two-photon scanning microscopy, J. Am. Chem. Soc., 2008, vol. 130, no. 5, pp. 1532–1533. https://doi.org/10.1021/ja076837c

    Article  Google Scholar 

  4. Sverbil, P.P., Gorelik, V.S., Kupov, M.R., Lepnev, L.S., and Savransky, V.V., Two-photon excited luminescence in POPOP under pulse-periodic laser excitation, Laser Phys., 2020, vol. 30, no. 2, p. 025404. https://doi.org/10.1088/1555-6611/ab5d29

    Article  ADS  Google Scholar 

  5. He, R., de Aldana, J.R.V., Pedrola, G.L., Chen, F., and Jaque, D., Two-photon luminescence thermometry: towards 3D high-resolution thermal imaging of waveguides, Opt. Express, 2016, vol. 24, no. 14, pp. 16156–16166. https://doi.org/10.1364/OE.24.016156

    Article  ADS  Google Scholar 

  6. Durr, N.J., Larson, T., Smith, D.K., Korgel, B.A., Sokolov, K., and Ben-Yakar, A., Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods, Nano Lett., 2007, vol. 7, no. 4, pp. 941–945. https://doi.org/10.1021/nl062962v

    Article  ADS  Google Scholar 

  7. Linnenbank, H., Saliba, M., Gui, L., Metzger, B., Tikhodeev, S.G., Kadro, J., Nasti, G., Abate, A., Hagfeldt, A., Graetzel, M., and Giessen, H., Temperature dependent two-photon photoluminescence of CH3NH3PbBr3: structural phase and exciton to free carrier transition, Opt. Mater. Express, 2018, vol. 8, no. 3, pp. 511–521. https://doi.org/10.1364/OME.8.000511

    Article  ADS  Google Scholar 

  8. Kupov, M.R., Gorelik, V.S., Sverbil, P.P., and Lepnev, L.S., Two-photon luminescence in POPOP and stilbene. J. Phys.: Conf. Ser., 2019, vol. 1348, p. 012055. https://doi.org/10.1088/1742-6596/1348/1/012055

    Article  Google Scholar 

  9. Chung, S.-J., Lin, T.-C., Kim, K.-S., He, G.S., Swiatkiewicz, J., Prasad, P.N., Baker, G.A., and Bright, F.V., Two-photon absorption and excited-state energy-transfer properties of a new multibranched molecule, Chem. Mater., 2001, vol. 13, no. 11, pp. 4071–4076. https://doi.org/10.1021/cm010151g

    Article  Google Scholar 

  10. Rumi, M. and Perry, J.W., Two-photon absorption: an overview of measurements and principles, Adv. Opt. Photon., 2010, vol. 2, no. 4, pp. 451–518. https://doi.org/10.1364/AOP.2.000451

    Article  Google Scholar 

  11. Molinaro, C., El Harfouch, Y., Palleau, E., Eloi, F., Marguet, S., Douillard, L., Charra, F., and Fiorini-Debuisschert, C., Two-photon luminescence of single colloidal gold nanorods: revealing the origin of plasmon relaxation in small nanocrystals, J. Phys. Chem. C, 2016, vol. 120, no. 40, pp. 23136–23143. https://doi.org/10.1021/acs.jpcc.6b07498

    Article  Google Scholar 

  12. Wang, H., Huff, T.B., Zweifel, D.A., He, W., Low, P.S., Wei, A., and Cheng, J.-X., In vitro and in vivo two-photon luminescence imaging of single gold nanorods, Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, no. 44, pp. 15752–15756. https://doi.org/10.1073/pnas.0504892102

    Article  ADS  Google Scholar 

  13. Remesh, V., Stührenberg, M., Saemisch, L., Accanto, N., and van Hulst, N.F., Phase control of plasmon enhanced two-photon photoluminescence in resonant gold nanoantennas. Appl. Phys. Lett., 2018, vol. 113, no. 21, p. 211101. https://doi.org/10.1063/1.5051381

    Article  ADS  Google Scholar 

  14. Xu, C. and Webb, W.W., Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm, J. Opt. Soc. Am. B, 1996, vol. 13, no. 3, pp. 481–491. https://doi.org/10.1364/JOSAB.13.000481

    Article  ADS  Google Scholar 

  15. Olesiak-Banska, J., Waszkielewicz, M., Obstarczyk, P., and Samoc, M., Two-photon absorption and photoluminescence of colloidal gold nanoparticles and nanoclusters, Chem. Soc. Rev., 2019, vol. 48, no. 15, pp. 4087–4117. https://doi.org/10.1039/C8CS00849C

    Article  Google Scholar 

  16. Ganeev, R.A., Ryasnyansky, A.I., Kamalov, S.R., Kodirov, M.K., and Usmanov, T., Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals, J. Phys. D: Appl. Phys., 2001, vol. 34, no. 11, pp. 1602–1611. https://doi.org/10.1088/0022-3727/34/11/308

    Article  ADS  Google Scholar 

  17. Tareeva, M., Shevchenko, M., Umanskaya, S., Savichev, V., Baranov, A., Tcherniega, N., and Kudryavtseva, A., Two-photon excited luminescence in polyethylene and polytetrafluoroethylene, J. Russ. Laser Res., 2020, vol. 41, no. 1, pp. 502—508. https://doi.org/10.1007/s10946-020-09903-8

    Article  Google Scholar 

  18. Audi, G., Bersillon, O., Blachot, J., and Wapstra, A.H., The Nubase evaluation of nuclear and decay properties, Nucl. Phys. A, 2003, vol. 729, no. 1, pp. 3–128. https://doi.org/10.1016/j.nuclphysa.2003.11.001

    Article  ADS  Google Scholar 

  19. Gaziev, S.A., Gorshkov, N.G., Mashirov, L.G., and Suglobov, D.N., Photostimulated oxygen exchange and photochemical properties of uranyl ions, Inorg. Chim. Acta, 1987, vol. 139, nos. 1–2, pp. 345–351. https://doi.org/10.1016/S0020-1693(00)84116-X

  20. Denning, R.G., Snellgrove, T.P., and Woodwark, D.R., The electronic structure of the uranyl ion. III. Theory, Mol. Phys., 1979, vol. 37, no. 4, pp. 1109–1143. https://doi.org/10.1080/00268977900100841

    Article  ADS  Google Scholar 

  21. Meinrath, G., Uranium(VI) speciation by spectroscopy, J. Radioanal. Nucl. Chem., 1997, vol. 224, no. 1–2, pp. 119–126. https://doi.org/10.1007/BF02034623

  22. Liu, G.K., Analysis of electronic states and energy level structure of uranyl in compounds, J. Phys. Chem. A, 2011, vol. 115, no. 44, pp. 12419–12425. https://doi.org/10.1021/jp208012q

    Article  Google Scholar 

  23. Rabinowitch, E. and Belford, R.L., Spectroscopy and Photochemistry of Uranyl Compounds, New York: Macmillan, 1964.

    Google Scholar 

  24. Wang, Z., Zachara, J.M., Yantasee, W., Gassman, P.L., Liu, Ch., and Joly, A.G., Cryogenic laser induced fluorescence characterization of U(VI) in hanford vadose zone pore waters, Environ. Sci. Technol., 2004, vol. 38, no. 21, pp. 5591–5597. https://doi.org/10.1021/es049512u

    Article  ADS  Google Scholar 

  25. Flint, C.D. and Tanner, P.A., Luminescence spectrum of Cs2UO2Cl4, J. Chem. Soc., Faraday Trans. 2, 1978, vol. 74, pp. 2210–2217. https://doi.org/10.1039/F29787402210

    Article  Google Scholar 

  26. Mizuoka, K., Tsushima, S., Hasegawa, M., Hoshi, T., Ikeda, Y., Electronic spectra of pure uranyl(V) complexes: characteristic absorption bands due to a UV \({\text{O}}_{2}^{ + }\) core in visible and near-infrared regions, Inorg. Chem., 2005, vol. 44, no. 18, pp. 6211–6218. https://doi.org/10.1021/ic050383810.1021/ic0503838

    Article  Google Scholar 

  27. Wang, Z., Zachara, J.M., Gassman, P.L., Liu, Ch., Qafoku, O., Yantasee, W., and Catalano, J.G., Fluorescence spectroscopy of U(VI)-silicates and U(VI)-contaminated Hanford sediment, Geochim. Cosmochim. Acta, 2005, vol. 69, no. 6, pp. 1391–1403. https://doi.org/10.1016/j.gca.2004.08.028

    Article  ADS  Google Scholar 

  28. GOST (State Standard) 9411-91: Color Optical Glass.

  29. Gorelik, V.S., Loboiko, A.A., and Nechipurenko, S.O., Resonance excitation of photoluminescence in crystalline uranyl acetate dehydrate, Opt. Spectrosc., 2018, vol. 124, no. 2, pp. 221–226. https://doi.org/10.1134/S0030400X1802008X

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research and Belarusian Republican Foundation for Fundamental Research (project no. 20-52-04001 Bel_mol_a) and within the state contract no. 0024-2019-0013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Sverbil.

Additional information

Translated by A. Kazantsev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savransky, V.V., Kupov, M.R., Pyatyshev, A.Y. et al. RESONANT TWO-PHOTON-EXCITED LUMINESCENCE IN ZINC-PHOSPHATE OPTICAL GLASS DOPED WITH SODIUM URANATE. Bull. Lebedev Phys. Inst. 48, 221–225 (2021). https://doi.org/10.3103/S106833562107006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106833562107006X

Keywords:

Navigation