Skip to main content
Log in

Coincidence of the Gelig–Leonov–Yakubovich, Filippov, and Aizerman–Pyatnitskiy definitions

  • Mathematics
  • Published:
Vestnik St. Petersburg University: Mathematics Aims and scope Submit manuscript

Abstract

This paper investigates a class of systems with discontinuous right-hand side, which are widely used in applications. Discontinuous systems are closely related to the concept of differential inclusion, which was first introduced by A. Marchaud and S.K. Zaremba. Three different approaches to the definition of differential inclusions are presented: the Filippov, the Aizerman–Pyatnitskiy, and the Gelig–Leonov–Yakubovich definitions. For the class of systems considered, it is shown when these definitions coincide and when they are different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Marchaud, “Sur les champs continues de demidroites et les équations différentielles du premier ordre,” Bull. Soc. Math. France 62, 1–38 (1934).

    MathSciNet  Google Scholar 

  2. S. K. Zaremba, “Sur les équations au paratingent,” Bull. Sci. Math. 60, 139–160 (1936).

    Google Scholar 

  3. C. Carathédory, Vorlesungen Über Reelle Funktionen (Verlag und Druck Von BG Teubner, Leipzig, 1918).

    Google Scholar 

  4. A. F. Filippov, “Differential equations with discontinuous right-hand sides,” Mat. Sb. 93, 99–128 (1960).

    Google Scholar 

  5. M. A. Aizerman and E. S. Pyatnitskiy, “Fundamentals of the theory of discontinuous systems. I,” Avtom. Telemekh., No. 7, 33–47 (1974)

    Google Scholar 

  6. A. Kh. Gelig, G. A. Leonov, and V. A. Yakubovich, Stability of Nonlinear Systems with a Nonunique Equilibrium State (Nauka, Moscow 1978) [in Russian].

    MATH  Google Scholar 

  7. N. N. Krasovskii and A. I. Subbotin, Positional Differential Games (Nauka, Moscow, 1974) [in Russian].

    MATH  Google Scholar 

  8. J. Cortes, “Discontinuous dynamical systems,” IEEE Control Syst. Mag. 28 (3), 36–73 (2008).

    Article  MathSciNet  Google Scholar 

  9. Qing Hui, M. M. Haddad, and S. Bhat, “Semistability, finitetime stability, differential inclusions, and discontinuous dynamical systems having a continuum of equilibria,” IEEE Trans. Autom. Control 54, 2465–2470 (2009).

    Article  MathSciNet  Google Scholar 

  10. L. Dieci and L. Lopez, “A survey of numerical methods for IVPs of ODEs with discontinuous right-hand-side,” J. Comput. Appl. Math. 236, 3967–3991 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  11. Y. V. Orlov, Discontinuous Systems: Lyapunov Analysis and Robust Synthesis under Uncertainty Conditions, Communications and Control Engineering (Springer-Verlag, London, 2008).

    Google Scholar 

  12. I. Boiko, Discontinuous Control Systems: Frequency-Domain Analysis and Design (Springer-Verlag, London, 2008).

    Google Scholar 

  13. A. Luo, Discontinuous Dynamical Systems (Springer-Verlag, Berlin, 2012).

    Book  MATH  Google Scholar 

  14. M. Akhmet, Principles of Discontinuous Dynamical Systems (Springer-Verlag, New York, 2010).

    Book  MATH  Google Scholar 

  15. Piecewise-Smooth Dynamical Systems: Theory and Applications, Ed. by M. Bernardo, C. Budd, A. R. Champneys, et al., in Ser.: Applied Mathematical Sciences (Springer-Verlag, London, 2008), Vol. 163.

  16. M. Fe kan, Bifurcation and Chaos in Discontinuous and Continuous Systems, in Nonlinear Physical Science (Springer-Verlag, Berlin, 2011).

    Google Scholar 

  17. A. F. Filippov, Differential Equations with Discontinuous Right-Hand Side (Nauka, Moscow, 1985) [in Russian].

    MATH  Google Scholar 

  18. V. A. Yakubovich, G. A. Leonov, and A. Kh. Gelig, Stability of Stationary Sets in Control Systems with Discontinuous Nonlinearities (World Scientific, Singapore, 2004).

    Google Scholar 

  19. I. A. Finogenko, Differential Equations with Discontinuous Right-Hand Side in Ser: Non-Classical Dynamical and Control Problems (Inst. Din. Sist. Teorii Upr. Sib. Otd. Ross. Akad. Nauk, Irkutsk, 2013), Vol. 1 [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Kiseleva.

Additional information

Original Russian Text © M.A. Kiseleva, N.V. Kuznetsov, 2015, published in Vestnik Sankt-Peterburgskogo Universiteta. Seriya 1. Matematika, Mekhanika, Astronomiya, 2015, No. 2, pp. 183–190.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiseleva, M.A., Kuznetsov, N.V. Coincidence of the Gelig–Leonov–Yakubovich, Filippov, and Aizerman–Pyatnitskiy definitions. Vestnik St.Petersb. Univ.Math. 48, 66–71 (2015). https://doi.org/10.3103/S1063454115020041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063454115020041

Keywords

Navigation