Skip to main content
Log in

The Evolution of Surface-Selective Laser Sintering: Modifying and Forming 3D Structures for Tissue Engineering

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The use of surface-selective laser sintering is considered for creating and modifying the architecture of three-dimensional structures from biocompatible and bioresorbable polylactide materials. The approach allows to eliminate the thermal degradation of sintered materials by localizing heating processes on their surfaces. This is achieved via the selective absorption of mid-infrared laser radiation (1.9 μm) by a thin layer of water droplets deposited on the surfaces of polymer particles (polymer fibers) or the use of hygroscopic coatings that absorb the energy of laser radiation better than the polymer material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Helidonis, E., Sobol, E., Kavvalos, G., Bizakis, J., et al., Am. J. Otolaryngol., 1993, vol. 14, no. 6, p. 410.

    Article  Google Scholar 

  2. Sobol, E., Sviridov, A., Omel’chenko, A., et al., Biotechnol. Genet. Eng. Rev., 2000, vol. 17, no. 1, p. 553.

    Article  Google Scholar 

  3. Bagratashvili, V.N., Baskov, A.V., Borshchenko, I.A., et al., Lazernaya inzheneriya khryashchei (Cartilage Laser Engineering), Moscow: Fizmatlit, 2006.

  4. Ball, M., Downes, S., Scotchford, C., et al., Biomaterials, 2001, vol. 22, no. 4, p. 337.

    Article  Google Scholar 

  5. Sobol, E.N., Sviridov, A.P., and Bagratashvili, V.N., Proc. SPIE, 1993, vol. 2080, p. 130.

    Article  ADS  Google Scholar 

  6. Asghari, F., Samiei, M., Adibkia, K., et al., Artif. Cells, Nanomed., Biotechnol., 2017, vol. 45, no. 2, p. 185.

    Article  Google Scholar 

  7. Jafari, M., Paknejad, Z., Rad, M.R., et al., J. Biomed. Mater. Res., Part B, 2017, vol. 105, no. 2, p. 431.

    Article  Google Scholar 

  8. Bandyopadhyay, S. and Hablitz, J.J., J. Neurophysiol., 2007, vol. 97, no. 6, p. 4120.

    Article  Google Scholar 

  9. Yeong, W.Y., Sudarmadji, N., Yu, H., et al., Acta Biomater., 2010, vol. 6, no. 6, p. 2028.

    Article  Google Scholar 

  10. Mazzoli, A., Med. Biol. Eng. Comput., 2013, vol. 51, no. 3, p. 245.

    Article  Google Scholar 

  11. Schmid, M., Amado, A., and Wegener, K., J. Mater. Res., 2014, vol. 29, no. 17, p. 1824.

    Article  ADS  Google Scholar 

  12. Moreno, MadridA.P., Vrech, S.M., Sanchez, M.A., et al., Mater. Sci. Eng., C, 2019, vol. 100, no. 3, p. 631.

    Article  Google Scholar 

  13. Demina, T.S., Bardakova, K.N., Minaev, N.V., et al., Polymers (Basel, Switz.), 2017, vol. 0, no. 7, p. 302.

  14. Eosoly, S., Brabazon, D., Lohfeld, S., et al., Acta Biomater., 2010, vol. 6, no. 7, p. 2511.

    Article  Google Scholar 

  15. Antonov, E.N., Bagratashvili, V.N., Whitaker, M.J., et al., Adv. Mater., 2005, vol. 17, no. 3, p. 327.

    Article  Google Scholar 

  16. Antonov, E.N., Bagratashvili, V.N., Howdle, S.M., et al., Laser Phys., 2006, vol. 16, no. 5, p. 774.

    Article  ADS  Google Scholar 

  17. Kanczler, J.M., Mirmalek-Sani, S.-H., Hanley, N.A., et al., Acta Biomater., 2009, vol. 5, no. 6, p. 2063.

    Article  Google Scholar 

  18. Kuznetsova, D., Prodanets, N., Rodimova, S., et al., Cell Adhes. Migr., 2017, vol. 11, no. 3, p. 233.

    Article  Google Scholar 

  19. Antonov, E.N., Krotova, L.I., Minaev, N.V., et al., Quantum Electron., 2015, vol. 45, no. 11, p. 1023.

    Article  ADS  Google Scholar 

  20. Poh, P.S.P., Chhaya, M.P., and Wunner, F.M., Adv. Drug Delivery, 2016, vol. 107, p. 228.

    Article  Google Scholar 

  21. Ge, Z., Tian, X., Heng, B.C., Fan, V., et al., Biomed. Mater., 2009, vol. 4, no. 2, 021001.

    Article  ADS  Google Scholar 

  22. Bose, S., Vahabzadeh, S., and Bandyopadhyay, A., Mater. Today, 2013, vol. 16, no. 12, p. 496.

    Article  Google Scholar 

  23. Rosenzweig, D.H., Carelli, E., Steffen, T., et al., Int. J. Mol. Sci., 2015, vol. 16, no. 7, 15118.

    Article  Google Scholar 

  24. Anitha, A., Sowmya, S., Kumar, P.T.S., et al., Prog. Polym. Sci., 2014, vol. 39, no. 9, p. 1644.

    Article  Google Scholar 

  25. Ahsan, S.M., Thomas, M., Reddy, K.K., et al., Int. J. Biol. Macromol., 2018, vol. 110, p. 97.

    Article  Google Scholar 

  26. Shen, Y., Tu, T., Yi, B., et al., Acta Biomater., 2019, vol. 97, p. 200.

    Article  ADS  Google Scholar 

  27. Romanova, O.A., Tenchurin, T.H., Demina, T.S., et al., Cell Proliferation, 2019, vol. 52, no. 3, p. 12598.

    Article  Google Scholar 

  28. Minaev, N.V., Antonov, E.N., Minaeva, S.A., et al., Prib. Tekh. Eksp., 2019, no. 1, p. 150.

  29. Tiaw, K.S., Goh, S.W., Hong, M., et al., Biomaterials, 2005, vol. 26, no. 7, p. 763.

    Article  Google Scholar 

  30. Antonov, E.N., Bagratashvili, V.N., Bochkova, S.A., et al., in Proc. 6th World Meeting on Pharmaceutics, Biopharmaceutics and Pharmaceutical Technology (PBP Meeting), Barcelona, 2008.

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project nos. 18-29-17050 (designing nonwoven materials via electrospinning) and no. 18-32-20184 (developing the technology of surface-selective laser sintering); by the RF Ministry of Science and Higher Education as part of a State Task for the Federal Scientific Research Center of Crystallography and Photonics in the development of laser additive technologies; and by the Enikolopov Institute of Synthetic Polymeric Materials as part of Russian Academic Excellence Project 5–100 in the study of materials made from aliphatic polyesters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Minaev.

Additional information

In memory of V. N. Bagratashvili

Translated by I. Obrezanova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minaev, N.V., Demina, T.S., Minaeva, S.A. et al. The Evolution of Surface-Selective Laser Sintering: Modifying and Forming 3D Structures for Tissue Engineering. Bull. Russ. Acad. Sci. Phys. 84, 1315–1320 (2020). https://doi.org/10.3103/S1062873820110192

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873820110192

Navigation