Skip to main content
Log in

Serpentines as Additives to Oils: Efficiency and Mechanism of Lubrication

  • NEW TECHNOLOGIES IN MECHANICAL ENGINEERING
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract

Data concerning the efficiency of the use of serpentines as antiwear, antifriction, anticorrosion, and environmentally friendly resource-restoring additives to lubricants are considered. Methods for the activation of serpentines aimed at enhancing the functioning thereof are discussed. Modern ideas concerning the mechanism of tribotechnical action of serpentines are analyzed. Based on them, a description is proposed for the sequence of processes providing efficient antifriction action of lubricants containing minerals belonging to the serpentine group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Dotsenko, A.I. and Buyanovskii, I.A., Tribotekhnika (Tribotechnology), Moscow: INFRA-M, 2020.

  2. Evdokimov, A.Yu., Fuks, I.G., and Lyubinin, I.A., Smazochnye materialy v tekhnosfere i biosfere: ekologicheskii effekt (Lubricant materials in technosphere and biosphere: Ecological effect), Kiev: Atika-N, 2012.

  3. Zuev, V.V., Konstitutsiya, svoistva mineralov i stroenie Zemli (energeticheskie aspekty) (Composition, Properties of Minerals and Structure of the Earth (Energy Aspects)), St. Petersburg: Nauka, 2005.

  4. Carmignano, O.R.D.R., Vieira, S.S., Brandão, P.R.G., Bertoli, A.C., and Lago, R.M., Serpentinites: Mineral structure, properties and technological applications, J. Braz. Chem. Soc., 2020, vol. 31, no. 1, pp. 2–14.  https://doi.org/10.21577/0103-5053.20190215

    Article  Google Scholar 

  5. Yu, H., Xu, Y., Shi, P., Wang, H., Wei, M., Zhao, K., and Xu, B., Microstructure, mechanical properties and tribological behavior of tribofilm generated from natural serpentine mineral powders as lubricant additive, Wear, 2013, vol. 297, nos. 1–2, pp. 802–810. https://doi.org/10.1016/j.wear.2012.10.013

    Article  Google Scholar 

  6. Wang, X., Wu, J., Wei, X., Liu, R., and Cao, Q., The effect of serpentine additive on energy-saving and auto-reconditioning surface layer formation, Ind. Lubr. Tribol., 2017, vol. 69, no. 2, pp. 158–165. https://doi.org/10.1108/ILT-02-2016-0018

    Article  Google Scholar 

  7. Yin, Y.L., Yu, H.L., Wang, H.M., Song, Z.Y., Zhang, Z., Ji, X.C., Cui, T.H., Wei, M., and Zhang, W., Friction and wear behaviors of steel/bronze tribopairs lubricated by oil with serpentine natural mineral additive, Wear, 2020, vols. 456–457, p. 203387. https://doi.org/10.1016/j.wear.2020.203387

    Article  Google Scholar 

  8. Chichinadze, A.V. and Albagachiev, A.Yu., Studying the Forsan additive at friction, Trenie Smazka Mash. Mekh., 2010, no. 8, pp. 28–30.

  9. Buyanovskii, I.A., Drozdov, Yu.N., Gostev, Yu.V., Novikov, V.I., and Zaslavsky, R.N., Antifriciton resource restoring composition additives for greases, Vestn. Mashinostr., 2005, no. 7, pp. 34–36.

  10. Dunaev, A.V. and Filippova, E.M., Netraditsionnaya tribotekhnika dlya povysheniya resursa avtotraktornoi tekhniki. Itogi 25-letnego razvitiya (Alternative Triboengineering for Increasing the Life Time of Automotive and Tractor Vechicles: Results of 25 Years of Development), Moscow: Gos. Nauchn. Issled. Tekhnol. Inst., 2017.

  11. Marinich, T.L., Mashkov, Yu.K., and Chechukov, N.T., Stable system of tribotechnical functioning, Trenie, iznos i smazochnye materialy. Trudy mezhdunarodnoi nauchnoi konferentsii (Friction, Wear, and Lubricants: Theses of Int. Sci. Conf.), Tashkent, 1985, vol. 2, p. 311.

  12. Balabanov, V.I., Bezrazbornoe vosstanovlenie trushchikhsya soedinenii avtomobilya (In-Place Recovery of Wearing Couplings of a Car), Moscow: Astrel’ AST, 2002.

  13. Pogodaev, L.I., Buyanovskii, I.A., Kryukov, E.Yu., Kuz’min, V.N., and Usachev, V.V., The mechanism of interaction between natural laminar hydrosilicates and friction surfaces, J. Mach. Manuf. Reliab., 2009, vol. 38, no. 5, p. 476. https://doi.org/10.3103/S1052618809050124

    Article  Google Scholar 

  14. Dunaev, A.V., Zuev, V.V., and Vasil’kov, D.V., Hypotheses of mechanisms of repair and recovery serpentine tribotechnical substances, Nanotekhnika, 2012, no. 4, p. 58.

  15. Jin, Yu. and Li, Sh., Superlubricity of in situ generated protective layer on worn metal surfaces in presence of Mg6Si4O10(OH)8, Superlubricity, Erdemir, A. and Martin, J.J., Eds., Amsterdam: Elsevier, 2007, pp. 445–469. https://doi.org/10.1016/B978-044452772-1/50055-X

    Book  Google Scholar 

  16. Pogodaev, L.I. and Kuz’min, V.M., Strukturno-energeticheskie modeli nadezhnosti materialov i mashin (Structural and Energy Models of Reliability of Materials and Machines), St. Petersburg: Akad. Transporta Ross. Fed., 2006.

  17. Telukh, D.M., Kuz’min, V.P., and Usachev, V.V., Introduction to the problem of using natural layered hydrosilicates in tribocouplings, Internet-Zh. Trenie, Iznos, Smazka, 2009, no. 3, p. 13.

  18. Dolgopolov, K.N., Lyubimov, D.N., and Glazunova, E.A., The effect of magnetite additives on the triboengineering properties of lubricating compositions containing mineral friction modifiers, J. Frict. Wear, 2011, vol. 32, no. 2, p. 101. https://doi.org/10.3103/S1068366611020048

    Article  Google Scholar 

  19. Dolgopolov, K.N., Lyubimov, D.N., Ponomarenko, A.G., Chigarenko, G.G., and Boiko, M.V., The structure of lubricating layers appearing during friction in the presence of additives of mineral friction modifiers, J. Frict. Wear, 2009, vol. 30, no. 5, p. 377. https://doi.org/10.3103/S1068366609050134

    Article  Google Scholar 

  20. Qin, Y., Wang, L., Yang, G., Yang, Y., and Wu, M., Characterisation of self-repairing layer formed by oleic acid modified magnesium silicate hydroxide, Lubr. Sci., 2021, vol. 33, no. 3, pp. 113–122. https://doi.org/10.1002/ls.1531

    Article  Google Scholar 

  21. Wang, B., Zhong, Z., Qui, H., Chen, D., Li, W., Li, S., and Tu, X., Nano serpentine powders as lubricant additive: Tribological behaviors and self-repairing performance on worn surface, Nanomaterials, 2020, vol. 10, no. 5, p. 922.  https://doi.org/10.3390/nano10050922

    Article  Google Scholar 

  22. Belyi, I.F., Merkulov, A.F., Belyi, V.I., and Golubev, I.G., Effektivnoe ispol’zovanie antifriktsionnykh dobavok k transmissionnym i motornym maslam (Effective Use of Antifriction Additives to Transmission and Motor Oils), Moscow: Ros-Informagrotekh, 2011.

  23. Yu, H.L., Xu, Y., Shi, P.J., Wang, H.M., Zhang, W., and Xu, B.S., Effect of thermal activation on the tribological behaviours of serpentine ultrafine powders as an additive in liquid paraffin, Tribol. Int., 2011, vol. 44, no. 12, pp. 1736–1741. https://doi.org/10.1016/j.triboint.2011.06.022

    Article  Google Scholar 

  24. Medvedeva V.V. Povyshenie tribotekhnicheskikh kharakteristik konsistentnykh smazochnykh materialov putem primeneniya dispersnykh chastits gidrosilikatov magniya, Extended Abstract of Cand. Sci. (Eng.) Dissertation, Peter the Great St. Petersburg Polytechnic Univ., St. Petersburg, 2018.

  25. Singh, D., Thakre, G.D., Sivakumar Konathala, L.N., and Prasad, V.V.D.N., Friction reduction capabilities of silicate compounds used in an engine lubricant on worn surfaces, Adv. Tribol., 2016, vol. 2016, p. 1901493. https://doi.org/10.1155/2016/1901493

    Article  Google Scholar 

  26. Leyland, A. and Matthews, A., On the significance of the h/e ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour, Wear, 2000, vol. 246, nos. 1–2, pp. 1–11. doi https://doi.org/10.1016/S0043-1648(00)00488-9

    Article  Google Scholar 

  27. Buyanovskii, I.A., Levchenko, V.A., Ignat’eva, Z.V., et al., Tribological characteristics of carbon diamond-like coatings of steel elements functioning in lubricant media, in Sovremennye tekhnologii modifitsirovaniya poverkhnostei detalei mashin (Modern Technologies for Modifying Surfaces of Machine Elements), Moscow: Lenand, 2013.

  28. Tyagi, A., Walia, R.S., Murtaza, Q., Pandey, S.M., Tyagi, P.K., and Bajaj, B., A critical review of diamond like carbon coating for wear resistance applications, Int. J. Refract. Met. Hard Mater., 2019, vol. 78, pp. 107–122.  https://doi.org/10.1016/j.ijrmhm.2018.09.006

    Article  Google Scholar 

  29. Aboua, K.A.M., Umehara, N., Kousaka, H., Tokoroyama, T., Murashima, M., Mustafa, M.M.B., Mabuchi, Y., Higuchi, T., and Kawaguchi, M., Effect of mating material and graphitization on wear of ac: h coating in boundary base oil lubrication, Tribol. Lett., 2020, vol. 68, no. 1, p. 24. https://doi.org/10.1007/s11249-019-1248-6

    Article  Google Scholar 

  30. Kanarev, F.M., Teoreticheskie osnovy fizkhimii nanotekhnologii (Theoretical Foundations of Physics and Chemistry of Nanotechnologies), 2nd ed., Krasnodar: Kubanskii Gos. Agrarnyi Univ., 2008.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Buyanovskii.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by O. Polyakov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albagachiev, A.Y., Buyanovskii, I.A., Dunaev, A.V. et al. Serpentines as Additives to Oils: Efficiency and Mechanism of Lubrication. J. Mach. Manuf. Reliab. 50, 459–468 (2021). https://doi.org/10.3103/S1052618821050034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1052618821050034

Keywords:

Navigation