Skip to main content
Log in

Predicting the hardenability of structural steel on the basis of the decomposition kinetics of supercooled austenite

  • Published:
Steel in Translation Aims and scope

Abstract

Calculation of the properties of low- and moderate-alloy structural steel is possible by modeling the decomposition kinetics of supercooled austenite at constant temperature and in continuous cooling. A model for predicting the microstructure of steel is derived by means of an artificial neural network of GRNN type. Calculation of the hardenability curve on the basis of microstructural modeling is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kachanov, N.N., Prokalivaemost’ stali (Hardenability of Steel), Moscow: Metallurgiya, 1978.

    Google Scholar 

  2. Popov, A.A. and Popova, L.E., Diagrammy prevrashcheniya austenita v stalyakh i beta-rastvora v splavakh titana. Spravochnik termista (Decomposition Diagrams of Austenite in Steels and Beta Solutions in Titanium Alloys: A Thermal Handbook), Moscow: Metallurgiya, 1991.

    Google Scholar 

  3. Nemchinskii, A.L., Teplovye rashchety termicheskoi obrabotki (Thermal Calculations of Heat Treatment), Moscow: SudpromGIZ, 1953.

    Google Scholar 

  4. Handbook of Thermal Process Modeling of Steel, Pan, J., Ed., London: Taylor & Francis, 2009.

    Google Scholar 

  5. Fachinotti, V., Cardona, A., and Anca, A., Solid-State Microstructure Evolution in Steels, Mechan. Comp., 2005, vol. 24, pp. 901–914.

    Google Scholar 

  6. Smoljan, B., Smokvina, H.S., Tomašić, N., and Iljkić, D., Computer Simulation of Microstructure Transformation in Heat Treatment Processes, J. Achievements Mater. Manuf. Eng., 2007, vol. 24,issue 1, pp. 275–282.

    Google Scholar 

  7. Dobrzan-ski, L.A., Malara, S., and Traska, J., Project of Computer Program for Designing the Steel with Assumed CCT Diagram, J. Achievements Mater. Manuf. Eng., 2007, vol. 20,issue 1–2, pp. 351–354.

    Google Scholar 

  8. Yescas, M.A., Prediction of the Vickers Hardness in Austempered Ductile Irons Using Neural Networks, Int. J. Cast Metals Res., 2003, vol. 15, pp. 513–521.

    CAS  Google Scholar 

  9. Trzaska, J., Jagiello, A., and Dobrzańskii, L.A., The Calculation of CCT Diagrams for Engineering Steels, Arch. Mater. Sci. Eng., 2000, vol. 39, pp. 13–20.

    Google Scholar 

  10. Saunders, N., Guo, Z., Li, X., Miodownik, A.P., and Shille, J.-P., The Calculation of TTT and CTT Diagrams for General Steels, Mater. Sci. Technol., 2002, vol. 18, pp. 861–863.

    Article  Google Scholar 

  11. Chen, I., Xia, W., and Chen, X.J., Development of Computer Simulation Software on Phase Transformation during Quenching, Acta Metall. Sin., 2000, vol. 13, no. 2, pp. 618–622.

    CAS  Google Scholar 

  12. Umemoto, M., Nishioka, N., and Tamura, I., Prediction of Hardenability from Isothermal Transformation Diagrams, Trans. ISIJ, 1982, vol. 22, pp. 629–636.

    Article  Google Scholar 

  13. Specht, D.S., A General Regression Neural Network, IEEE Trans. Neural Net., 1991, vol. 2, no. 6, pp. 568–576.

    Article  CAS  Google Scholar 

  14. Duzgun, R., Generalized Regression Neural Networks for Inflation Forecasting, Int. Res. J. Fin. Econ., 2010, issue 51, pp. 59–70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Rifel’, 2013, published in “Stal’,” 2013, No. 3, pp. 58–61.

About this article

Cite this article

Rifel’, A.A. Predicting the hardenability of structural steel on the basis of the decomposition kinetics of supercooled austenite. Steel Transl. 43, 148–151 (2013). https://doi.org/10.3103/S0967091213030108

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091213030108

Keywords

Navigation