Skip to main content
Log in

Genetic variability of anaplasmataceae bacteria determined in Haemaphysalis spp. and Dermacentor sp. Ticks on the territory of the Russian Far East

  • Experimental Works
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

In total, 484 Haemaphysalis japonica, 359 Haemaphysalis concinna, and 221 Dermacentor silvarum collected in Amur oblast and Khabarovsk krai of the Russian Far East were examined regarding the presence of Anaplasmataceae bacteria using nested PCR. All positive samples were characterized by analysis of the 16S rRNA gene and/or groESL operone nucleotide sequences. Forty-nine H. japonica and three H. concinna were shown to contain DNA of two new Ehrlichia genetic variants. On the basis of 16S rRNA gene and groESL operone nucleotide sequences analysis, these genetic variants were found to be most closely related to Ehrlichia spp. revealed in Haemaphysalis spp. ticks in Japan. Four H. concinna from Amur oblast were shown to contain DNA of a new Anaplasma bovis genetic variant, which corresponded to the A. bovis genetic variant revealed in a red gray-backed vole and a Siberian chipmunk from the Far East. Three H. concinna and nine D. silvarum contained DNA of atypical bacteria that cannot be attributed to any Anaplasmataceae genera based on the determined sequences of the 16S rRNA gene fragments. The revealed atypical bacteria significantly differed from each other and did not form a separate genetic group on the basis of 16S rRNA gene sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nefedova, V.V., Korenberg, E.I., Kovalevskii, Yu.V., et al., Vestn. Ross. Akad. Med. Nauk, 2008, vol. 7, pp. 47–50.

    PubMed  Google Scholar 

  2. Rar, V.A., Epikhina, T.I., Livanova, N.N., et al., Mol. Gen. Microbiol. Virol., 2011, vol. 2, pp. 17–23.

    Google Scholar 

  3. Semenov, A.V., Alekseev, A.N., Dubinina, E.V., et al., Med. Parazitol. Parazit. Bol., 2001, vol. 3, pp. 11–15.

    Google Scholar 

  4. Shpynov, S.N., Rudakov, N.V., Yastrebov, V.K., et al., Med. Parazitol. Parazit. Bol., 2004, vol. 2, pp. 10–14.

    Google Scholar 

  5. Dumler, J.S., Barbet, A.F., Bekker, C.P., et al., Int. J. Syst. Evol. Microbiol., 2001, vol. 51, pp. 2145–2165.

    Article  PubMed  CAS  Google Scholar 

  6. Eremeeva, M.E., Oliveira, A., Robinson, J.B., et al., Ann. N. Y. Acad. Sci., 2006, vol. 1078, pp. 291–298.

    Article  PubMed  CAS  Google Scholar 

  7. Goethert, H.K. and Telford 3rd, S.R., J. Clin. Microbiol., 2003, vol. 41, pp. 3744–7.

    Article  PubMed  Google Scholar 

  8. Inokuma, H., Beppu, T., Okuda, M., et al., J. Clin. Microbiol., 2004, vol. 42, pp. 1353–1355.

    Article  PubMed  Google Scholar 

  9. Jiang, B.G., Cao, W.C., Niu, J.J., et al., Vector Borne Zoonotic Dis., 2011, vol. 11, p. 325.

    Article  Google Scholar 

  10. Kang, J.G., Ko, S., Kim, Y.J., et al., Vector Borne Zoonotic Dis., 2011, vol. 11, pp. 929–938.

    Article  PubMed  Google Scholar 

  11. Kawahara, M., Rikihisa, Y., Isogai, E., et al., Int. J. Syst. Evol. Microbiol., 2004, vol. 54, pp. 837–843.

    Article  Google Scholar 

  12. Kawahara, M., Rikihisa, Y., Isogai, E., et al., Appl. Environ. Microbiol., 2006, vol. 72, pp. 1102–1109.

    Article  PubMed  CAS  Google Scholar 

  13. Kim, C.M., Kim, M.S., Park, M.S., et al., Vector Borne Zoonotic Dis., 2003, vol. 3, pp. 17–26.

    Article  PubMed  Google Scholar 

  14. Liz, J.S., Anderes, L., Sumner, J.W., et al., J. Clin. Microbiol., 2000, vol. 38, pp. 1002–1007.

    PubMed  CAS  Google Scholar 

  15. Matsuoto, K., Takeuchi, T., Yokoyama, N., et al., Vet. Med. Sci., 2011, vol. 73, pp. 1485–1488.

    Article  Google Scholar 

  16. Parola, P., Cornet, J.P., Sanogo, Y.O., et al., J. Clin. Microbiol., 2003, vol. 41, pp. 1600–1608.

    Article  PubMed  CAS  Google Scholar 

  17. Rar, V.A., Livanova, N.N., Panov, V.V., et al., Ticks Tick-Borne Dis., 2010, vol. 1, pp. 57–65.

    Article  PubMed  Google Scholar 

  18. Ravyn, M.D., Korenberg, E.I., and Oeding, J.A., Lancet, 1999, vol. 353, pp. 722–723.

    Article  PubMed  CAS  Google Scholar 

  19. Rikihisa, Y., Clin. Microbiol. Rev., 1991, vol. 4, pp. 286–308.

    PubMed  CAS  Google Scholar 

  20. Sashika, M., Abe, G., Matsumoto, K., and Inokuma, H., Vector Borne Zoonotic Dis., 2011, vol. 11, pp. 349–354.

    Article  PubMed  Google Scholar 

  21. Shibata, S., Kawahara, M., Rikihisa, Y., et al., J. Clin. Microbiol., 2000, vol. 38, pp. 1331–1338.

    PubMed  CAS  Google Scholar 

  22. Summer, J.W., Nicholson, W.L., and Massung, R.F., J. Clin. Microbiol., 1997, vol. 35, pp. 2087–2092.

    Google Scholar 

  23. Wen, B., Jian, R., Zhang, Y., and Chen, R., J. Clin. Microbiol., 2002, vol. 40, pp. 3286–3290.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Rar.

Additional information

Original Russian Text © V.A. Rar, T.I. Epikhina, N.M. Pukhovskaya, N.P. Vysochina, L.I. Ivanov, 2013, published in Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya, 2013, No. 2, pp. 16–22.

The article was translated by the authors.

About this article

Cite this article

Rar, V.A., Epikhina, T.I., Pukhovskaya, N.M. et al. Genetic variability of anaplasmataceae bacteria determined in Haemaphysalis spp. and Dermacentor sp. Ticks on the territory of the Russian Far East. Mol. Genet. Microbiol. Virol. 28, 56–63 (2013). https://doi.org/10.3103/S0891416813020055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416813020055

Keywords

Navigation