Skip to main content
Log in

Molecular epidemiology of tuberculosis: Objectives, methods, and prospects

  • Reviews
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

During the last decade, the role of molecular epidemiology in tuberculosis research has become unquestionable. Methods such as the IS6110-based RFLP analysis, spoligotyping, and VNTR genotyping, as well as genomic deletion analysis and single nucleotide polymorphism analysis, are used for epidemiological and phylogenetic studies of Mycobacterium tuberculosis. The results of these methods are used to study the mechanisms of the origin and transmission of tuberculosis, as well as the resistance of M. tuberculosis strains to anti-tuberculosis drugs. This review considers the main molecular and genetic methods for studying tuberculosis epidemiology, as well as their prospective applications in the Russian Federation taking into consideration the epidemiological situation in the country and the available laboratory infrastructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balabanova, Ya.M., Nikolaevsky, V.V., Raddi, M., et al., The Predominance of Mycobacterium tuberculosis Strains of the Beijing Family and the Risk Factors of Their Transmission in the Samara Region, Probl. Tub., 2006, no. 2, pp. 31–36.

  2. Narvskaya, O.V., Mokrousov, I.V., Limeshenko, E.V., et al., Characterization of Mycobacterium tuberculosis Strains Circulating in the Northwest Russia by using Spoligotyping, Probl. Tub., 2002, no. 4, pp. 44–48.

  3. Surikova, O.V., Voitikh, D.V., Kurunov, Yu.L., et al., Experience of Using VNTR Typing of Mycobacterium tuberculosis to Solve Clinical Problems: Quality Control of Treatment and the Work of Laboratory Services, Mol. Genet., 2005, no. 2, pp. 21–24.

  4. Shilova, M.V., Tuberculosis in Russia at the End of XX Century, Probl. Tub., 2001, no. 5, pp. 8–13.

  5. Alland, D., Whittam T.S., Murray M.B. et al., Modeling Bacterial Evolution with Comparative-Genome-Based Marker Systems: Application to Mycobacterium tuberculosis Evolution and Pathogenesis, J. Bacteriol., 2003, vol. 185, no. 11, pp. 3392–3399.

    Article  PubMed  CAS  Google Scholar 

  6. Allix-Beguec, C., Harmsen, D., Weniger, T., et al., Evaluation and Strategy for Use of MIRU-VNTR Plus, a Multifunctional Database for Online Analysis of Genotyping Data and Phylogenetic Identification of Mycobacterium tuberculosis Complex Isolates, J. Clin. Microbiol., 2008, vol. 46, no. 8, pp. 2692–2699.

    Article  PubMed  CAS  Google Scholar 

  7. Alonso-Rodriguez, N., Martinez-Lirola, M., Sanchez, M.L., et al., Prospective Universal Application of Mycobacterial Interspersed Repetitive-Unit-Variable-Number Tandem-Repeat Genotyping to Characterize Mycobacterium tuberculosis Isolates for Fast Identification of Clustered and Orphan Cases, J. Clin. Microbiol., 2009, vol. 47, no. 7, pp. 2026–2032.

    Article  PubMed  CAS  Google Scholar 

  8. Baranov, A.A., Mariandyshev, A.O., Mannsaker, T., et al., Molecular Epidemiology and Drug Resistance of Widespread Genotypes of Mycobacterium tuberculosis in North-Western Russia, Int. J. Tuberc. Lung Dis., 2009, vol. 13, no. 10, pp. 1288–1293.

    PubMed  CAS  Google Scholar 

  9. Brosch, R., Gordon, S.V., Marmiesse, M., et al., A New Evolutionary Scenario for the Mycobacterium tuberculosis Complex, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, no. 6, pp. 3684–3689.

    Article  PubMed  CAS  Google Scholar 

  10. Brosch, R., Pym, A.S., Gordon, S.V., et al., The Evolution of Mycobacterial Pathogenicity: Clues from Comparative Genomics, Trends Microbiol., 2001, vol. 9, no. 9, pp. 452–458.

    Article  PubMed  CAS  Google Scholar 

  11. Brown, T., Nikolayevsky, V., Vetji, P., et al., Associations between Mycobacterium tuberculosis Strains and Phenotypes, Emerg. Infect. Dis., 2010, vol. 16, no. 2, pp. 272–280.

    PubMed  Google Scholar 

  12. Brudey, K., Driscoll, J.R., Rigouts, L., et al., Mycobacterium tuberculosis Complex Genetic Diversity: Mining the Fourth International Spoligotyping Database (SpoIDB4) for Classification, Population Genetics and Epidemiology, BMC Microbiol., 2006, vol. 6, p. 23.

    Article  PubMed  Google Scholar 

  13. Christianson, S., Wolfe, J., Orr, P., et al., Evaluation of 24 Locus MIRU-VNTR Genotyping of Mycobacterium tuberculosis Isolates in Canada, Tuberculosis, 2010, vol. 90, no. 1, pp. 31–38.

    Article  PubMed  CAS  Google Scholar 

  14. Clark, C.M., Driver, C.R., Munsiff, S.S., et al., Universal Genotyping in Tuberculosis Control Program, New York City, 2001–2003, Emerg. Infect. Dis., 2006, vol. 12, no. 5, pp. 719–724.

    PubMed  CAS  Google Scholar 

  15. Cole, S.T., Brosch, R., Parkhill, J., et al., Deciphering the Biology of Mycobacterium tuberculosis from the Complete Genome Sequence, Nature, 1998, vol. 393, no. 6685, pp. 537–544.

    Article  PubMed  CAS  Google Scholar 

  16. Comas, I., Homolka, S., Niemann, S., et al., Genotyping of Genetically Monomorphic Bacteria: DNA Sequencing in Mycobacterium tuberculosis Highlights the Limitations of Current Methodologies, PloS One, 2009, vol. 4, no. 11, p. 7815.

    Article  Google Scholar 

  17. Devaux, I., Manissero, D., Fernandez de la Hoz, K., et al., Surveillance of Extensively Drug-Resistant Tuberculosis in Europe, 2003–2007, Euro Surveill, 2010, vol. 15, no. 11.

  18. Drobniewski, F., Balabanova, Y., Nikolayevsky, V., et al., Drug-Resistant Tuberculosis, Clinical Virulence, and the Dominance of the Beijing Strain Family in Russia, J. Amer. Med. Assoc., 2005, vol. 293, no. 22, pp. 2726–2731.

    Article  CAS  Google Scholar 

  19. Duong, D.A., Nguyen, T.H., Nguyen, T.N., et al., Beijing Genotype of Mycobacterium tuberculosis Is Significantly Associated with High-Level Fluoroquinolone Resistance in Vietnam, Antimicrob. Agents Chemother., 2009, vol. 53, no. 11, pp. 4835–4839.

    Article  PubMed  Google Scholar 

  20. Erokhin, V.V., Main Results and Prospects of the Activities of a WHO Collaborating Tuberculosis-Combating Center in the Russian Federation, Probl. Tub., 2004, no. 8, pp. 3–7.

  21. Fears, R., Kaufmann, S., Ter Meulen, V., et al., Drug-Resistant Tuberculosis in the European Union: Opportunities and Challenges for Control, Tuberculosis, 2010.

  22. Fleischmann, R.D., Alland, D., Eisen, J.A., et al., Whole-Genome Comparison of Mycobacterium tuberculosis Clinical and Laboratory Strains, J. Bacteriol., 2002, vol. 184, no. 19, pp. 5479–5490.

    Article  PubMed  CAS  Google Scholar 

  23. Flores, L., Jarlsberg, L.G., Kim, E.Y., et al., Comparison of Restriction Fragment Length Polymorphism with the Polymorphic Guanine-Cytosine-Rich Sequence and Spoligotyping for Differentiation of Mycobacterium tuberculosis Isolates with Five or Fewer Copies of IS6110, J. Clin. Microbiol., 2010, vol. 48, no. 2, pp. 575–578.

    Article  PubMed  CAS  Google Scholar 

  24. Flores, L., Van, T., Narayanan, S., et al., Large Sequence Polymorphisms Classify Mycobacterium tuberculosis Strains with Ancestral Spoligotyping Patterns, J. Clin. Microbiol., 2007, vol. 45, no. 10, pp. 3393–3395.

    Article  PubMed  CAS  Google Scholar 

  25. Frieden, T., Toman’s Tuberculosis. Case Detection, Treatment, and Monitoring: Questions and Answers, Genewa: WHO, 2004.

    Google Scholar 

  26. Frothingham, R. and Meeker-O’Connell, W.A., Genetic Diversity in the Mycobacterium tuberculosis Complex Based on Variable Numbers of Tandem DNA Repeats, Microbiology, 1998, vol. 144, no. 5, pp. 1189–1196.

    Article  PubMed  CAS  Google Scholar 

  27. Gagneux, S. and Small, P.M., Global Phylogeography of Mycobacterium tuberculosis and Implications for Tuberculosis Product Development, Lancet Infect. Dis., 2007, vol. 7, no. 5, pp. 328–337.

    Article  PubMed  Google Scholar 

  28. Galagan, J.E., Sisk, P., Stolte, C., et al., TB Database 2010: Overview and Update, Tuberculosis.

  29. Glynn, J.R., Whiteley, J., Bifani, P.J., et al., Worldwide Occurrence of Beijing/W Strains of Mycobacterium tuberculosis: A Systematic Review, Emerg. Infect. Dis., 2002, vol. 8, no. 8, pp. 843–849.

    PubMed  Google Scholar 

  30. Goguet de la Salmoniere, Y.O., Kim, C.C, Tsolaki, A.G., et al., High-Throughput Method for Detecting Genomic-Deletion Polymorphisms, J. Clin. Microbiol., 2004, vol. 42, pp. 7, pp. 2913–2918.

    Article  Google Scholar 

  31. Gutacker, M.M., Smoot, J.C., Migliaccio, C.A., et al., Genome-Wide Analysis of Synonymous Single Nucleotide Polymorphisms in Mycobacterium tuberculosis Complex Organisms: Resolution of Genetic Relationships among Closely Related Microbial Strains, Genetics, 2002, vol. 162, no. 4, pp. 1533–1543.

    PubMed  CAS  Google Scholar 

  32. Gutacker, M.M., Mathema, B., Soini, H., et al., Single-Nucleotide Polymorphism-Based Population Genetic Analysis of Mycobacterium tuberculosis Strains from 4 Geographic Sites, J. Infect. Dis., 2006, vol. 193, no. 1, pp. 121–128.

    Article  PubMed  CAS  Google Scholar 

  33. Gutierrez, M.C., Ahmed, N., Willery, E., et al., Predominance of Ancestral Lineages of Mycobacterium tuberculosis in India, Emerg. Infect. Dis, 2006, vol. 12, no. 9, pp. 1367–1374.

    PubMed  CAS  Google Scholar 

  34. Hermans, P.W., van Soolingen, D., Dale, J.W., et al., Insertion Element IS986 from Mycobacterium tuberculosis: a Useful Tool for Diagnosis and Epidemiology of Tuberculosis, J. Clin. Microbiol., 1990, vol. 28, no. 9, pp. 2051–2058.

    PubMed  CAS  Google Scholar 

  35. Hofmann-Thiel, S., van Ingen, J., Feldmann, K., et al., Mechanisms of Heteroresistance to Isoniazid and Rifampin of Mycobacterium tuberculosis in Tashkent, Uzbekistan, Eur. Respir. J., 2009, vol. 33, no. 2, pp. 368–374.

    Article  PubMed  CAS  Google Scholar 

  36. Ioerger, T.R., Koo, S., No, E.G., et al., Genome Analysis of Multi-and Extensively-Drug-Resistant Tuberculosis from KwaZulu-Natal, South Africa, PLoS One, 2009, vol. 4, no. 11, p. 7778.

    Article  Google Scholar 

  37. Kamerbeek, J., Schouls, I., Kolk, A., et al., Simultaneous Detection and Strain Differentiation of Mycobacterium tuberculosis for Diagnosis and Epidemiology, J. Clin. Microbiol., 1997, vol. 35, no. 4, pp. 907–914.

    PubMed  CAS  Google Scholar 

  38. Kanduma, E., McHugh, T.D., and Gillespie, S.H., Molecular Methods for Mycobacterium tuberculosis Strain Typing: A User’s Guide, J. Appl. Microbiol., 2003, vol. 94, no. 5, pp. 781–791.

    Article  PubMed  CAS  Google Scholar 

  39. Kwara, A., Schiro, R., Cowan, L.S., et al., Evaluation of the Epidemiologic Utility of Secondary Typing Methods for Differentiation of Mycobacterium tuberculosis Isolates, J. Clin. Microbiol., 2003, vol. 41, no. 6, pp. 2683–2685.

    Article  PubMed  CAS  Google Scholar 

  40. Mathema, B., Kurepina, N.E., Bifani, P.J., et al., Molecular Epidemiology of Tuberculosis: Current Insights, Clin. Microbiol. Rev., 2006, vol. 19, no. 4, pp. 658–685.

    Article  PubMed  CAS  Google Scholar 

  41. Maus, C.E., Plikaytis, B.B., and Shinnick, T.M., Mutation of tlyA confers Capreomycin Resistance in Mycobacterium tuberculosis, Antimicrob. Agents Chemother., 2005, vol. 49, no. 2, pp. 571–577.

    Article  PubMed  CAS  Google Scholar 

  42. Migliori, G.B., Centis, R., Lange, C., et al., Emerging Epidemic of Drug-Resistant Tuberculosis in Europe, Russia, China, South America and Asia: Current Status and Global Perspectives, Curr. Opin. Pulm. Med., 2010, vol. 16, no. 3, pp. 171–179.

    PubMed  Google Scholar 

  43. Mokrousov, I., Otten, T., Manicheva, O., et al., Molecular Characterization of Ofloxacin-Resistant Mycobacterium tuberculosis Strains from Russia, Antimicrob. Agents Chemother., 2008, vol. 52, no. 8, pp. 2937–2939.

    Article  PubMed  CAS  Google Scholar 

  44. Mostowy, S., Cousins, D., Brinkman, J., et al., Genomic Deletions Suggest a Phylogeny for the Mycobacterium tuberculosis Complex, J. Infect. Dis., 2002, vol. 186, no. 1, pp. 74–80.

    Article  PubMed  CAS  Google Scholar 

  45. Narvskaya, O., Otten, T., Limeschenko, E., et al., Nosocomial Outbreak of Multidrug-Resistant Tuberculosis Caused by a Strain of Mycobacterium tuberculosis W-Beijing Family in St. Petersburg, Russia, Eur. J. Clin. Microbiol. Infect. Dis., 2002, vol. 21, no. 8, pp. 596–602.

    Article  PubMed  CAS  Google Scholar 

  46. Niemann, S., Koser, C.U., Gagneux, S., et al., Genomic Diversity among Drug Sensitive and Multidrug Resistant Isolates of Mycobacterium tuberculosis with Identical DNA Fingerprints, PloS One, 2009, vol. 4, no. 10, p. 7407.

    Article  Google Scholar 

  47. Nodieva, A., Jansone, I., Broka, L., et al., Recent Nosocomial Transmission and Genotypes of Multidrug-Resistant Mycobacterium tuberculosis, Int. J. Tuberc. Lung Dis., 2010, vol. 14, no. 4, pp. 427–433.

    PubMed  CAS  Google Scholar 

  48. Pardini, M., Niemann, S., Varaine, F., et al., Characteristics of Drug-Resistant Tuberculosis in Abkhazia (Georgia), a High-Prevalence Area in Eastern Europe, Tuberculosis, 2009, vol. 89, no. 4, pp. 317–324.

    Article  PubMed  CAS  Google Scholar 

  49. Parsons, L.M., Brosch, R., Cole, S.T., et al., Rapid and Simple Approach for Identification of Mycobacterium tuberculosis Complex Isolates by PCR-Based Genomic Deletion Analysis, J. Clin. Microbiol., 2002, vol. 40, no. 7, pp. 2339–2345.

    Article  PubMed  CAS  Google Scholar 

  50. Qian, L., van Embden, J.D., van Der Zanden, A.G., et al., Retrospective Analysis of the Beijing Family of Mycobacterium tuberculosis in Preserved Lung Tissue, J. Clin. Microbiol., 1999, vol. 37, no. 2, pp. 471–474.

    PubMed  CAS  Google Scholar 

  51. Ramaswamy, S. and Musser, J.M., Molecular Genetic Basis of Antimicrobial Agent Resistance in Mycobacterium tuberculosis: 1998 Update, Tuberc. Lung Dis., 1998, vol. 79, no. 1, pp. 3–29.

    Article  CAS  Google Scholar 

  52. Reed, M.B., Pichler, V.K., McIntosh, F., et al., Major Mycobacterium tuberculosis Lineages Associate with Patient Country of Origin, J. Clin. Microbiol., 2009, vol. 47, no. 4, pp. 1119–1128.

    Article  PubMed  CAS  Google Scholar 

  53. Rengarajan, J., Sassetti, C.M., Naroditskaya, V., et al., The Folate Pathway Is a Target for Resistance to the Drug para-Aminosalicylic Acid (PAS) in Mycobacteria, Mol. Microbiol., 2004, vol. 53, no. 1, pp. 275–282.

    Article  PubMed  CAS  Google Scholar 

  54. Roring, S., Scott, A., Brittain, D., et al., Development of Variable-Number Tandem Repeat Typing of Mycobacterium bovis: Comparison of Results with Those Obtained by Using Existing Exact Tandem Repeats and Spoligotyping, J. Clin. Microbiol., 2002, vol. 40, no. 6, pp. 2126–2133.

    Article  PubMed  CAS  Google Scholar 

  55. Roring, S., Scott, A.N., Glyn Hewinson, R., et al., Evaluation of Variable Number Tandem Repeat (VNTR) Loci in Molecular Typing of Mycobacterium bovis Isolates from Ireland, Vet. Microbiol., 2004, vol. 101, no. 1, pp. 65–73.

    Article  PubMed  CAS  Google Scholar 

  56. Ross, B.C., Raios, K., Jackson, K., et al., Molecular Cloning of a Highly Repeated DNA Element from Mycobacterium tuberculosis and Its Use as an Epidemiological Tool, J. Clin. Microbiol., 1992, vol. 30, no. 4, pp. 942–946.

    PubMed  CAS  Google Scholar 

  57. Smittipat, N., Billamas, P., Patittapongarnpim, M., et al., Polymorphism of Variable-Number Tandem Repeats at Multiple Loci in Mycobacterium tuberculosis, J. Clin. Microbiol., 2005, vol. 43, no. 10, pp. 5034–5943.

    Article  PubMed  CAS  Google Scholar 

  58. Sola, C., Fillioi, I., Legrand, E., et al., Genotyping of the Mycobacterium tuberculosis Complex using MIRUs: Association with VNTR and Spoligotyping for Molecular Epidemiology and Evolutionary Genetics, Infect. Genet. Evol., 2003, vol. 3, no. 2, pp. 125–133.

    Article  PubMed  CAS  Google Scholar 

  59. Sreevatsan, S., Pan, X., Stockbauer, K.E., et al., Restricted Structural Gene Polymorphism in the Mycobacterium tuberculosis Complex Indicates Evolutionarily Recent Global Dissemination, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, no. 18, pp. 9869–9874.

    Article  PubMed  CAS  Google Scholar 

  60. Supply, P., Allix, C., Lesjean, S., et al., Proposal for Standardization of Optimized Mycobacterial Interspersed Repetitive Unit-Variable-Number Tandem Repeat Typing of Mycobacterium tuberculosis, J. Clin. Microbiol., 2006, vol. 44, no. 12, pp. 4498–4510.

    Article  PubMed  CAS  Google Scholar 

  61. Supply, P., Mazars, E., Lesjean, S., et al., Variable Human Minisatellite-Like Regions in the Mycobacterium tuberculosis Genome, Mol. Microbiol., 2000, vol. 36, no. 3, pp. 762–771.

    Article  PubMed  CAS  Google Scholar 

  62. Supply, P., Warren, R.M., Banuls, A.L., et al., Linkage Disequilibrium between Minisatellite Loci Supports Clonal Evolution of Mycobacterium tuberculosis in a High Tuberculosis Incidence Area, Mol. Microbiol., 2003, vol. 47, no. 2, pp. 529–538.

    Article  PubMed  CAS  Google Scholar 

  63. Thong-On, A., Smittipat, N., Juthayohin, T., et al., Variable-Number Tandem Repeats Typing of Mycobacterium tuberculosis Isolates with Low Copy Numbers of IS6110 in Thailand, Tuberculosis, 2010, vol. 90, no. 1, pp. 9–15.

    Article  PubMed  CAS  Google Scholar 

  64. Toungoussova, O.S., Sandven, P., Mariandyshev, A.O., et al., Spread of Drug-Resistant Mycobacterium tuberculosis Strains of the Beijing Genotype in the Arkhangel Oblast, Russia, J. Clin. Microbiol., 2002, vol. 40, no. 6, pp. 1930–1937.

    Article  PubMed  CAS  Google Scholar 

  65. Tsolaki, A.G., Gagneux, S., and Pym, A.S., et al., Genomic Deletions Classify the Beijing/W Strains as a Distinct Genetic Lineage of Mycobacterium tuberculosis, J. Clin. Microbiol., 2005, vol. 43, no. 7, pp. 3185–3191.

    Article  PubMed  CAS  Google Scholar 

  66. Tsolaki, A.G., Hirsh, A.E., DeRiemer, K., et al., Functional and Evolutionary Genomics of Mycobacterium tuberculosis: Insights from Genomic Deletions in 100 Strains, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, no. 14, pp. 4865–4870.

    Article  PubMed  CAS  Google Scholar 

  67. van Embden, J.D., Cave, M.D., Crawford, J.T., et al., Strain Identification of Mycobacterium tuberculosis by DNA Fingerprinting: Recommendations for a Standardized Methodology, J. Clin. Microbiol., 1993, vol. 31, no. 2, pp. 406–409.

    PubMed  Google Scholar 

  68. Velji, P., Nikolayevsky, V., Brown, T., et al., Discriminatory Ability of Hypervariable Variable Number Tandem Repeat Loci in Population-Based Analysis of Mycobacterium tuberculosis Strains, London, UK, Emerg. Infect. Dis., 2009, vol. 15, no. 10, pp. 1609–1616.

    PubMed  CAS  Google Scholar 

  69. Wang, J.J., Hu, Y., Jiang, W.L., et al., Population-Based Molecular Epidemiologic Study of Rifampicin-Resistant Tuberculosis in Rural Area of Eastern China, Zhonghua Liu Xing Bing Xue Za Zhi, 2009, vol. 30, no. 11, pp. 1189–1193.

    PubMed  CAS  Google Scholar 

  70. World Health Organisation. The Global MDR-TB & XDR-TB Response Plan; 2007–2008. WHO/HTM/TB/2007.387.

  71. Yang, Z., Chaves, F., Barnes, P.F., et al., Evaluation of Method for Secondary DNA Typing of Mycobacterium tuberculosis with PTBNI2 in Epidemiologic Study of Tuberculosis, J. Clin. Microbiol., 1996, vol. 34, no. 12, pp. 3044–3048.

    PubMed  CAS  Google Scholar 

  72. Yesilkaya, H., Meacci, F., Niemann, S., et al., Evaluation of Molecular-Beacon, TaqMan, and Fluorescence Resonance Energy Transfer Probes for Detection of Antibiotic Resistance-Conferring Single Nucleotide Polymorphisms in Mixed Mycobacterium tuberculosis DNA Extracts, J. Clin. Microbiol., 2006, vol. 44, no. 10, pp. 3826–3829.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Kontsevaya.

Additional information

Original Russian Text © I.S. Kontsevaya, V.V. Nikolayevsky, Ya.M. Balabanova, 2011, published in Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya, 2011, No. 1, pp. 3–10.

About this article

Cite this article

Kontsevaya, I.S., Nikolayevsky, V.V. & Balabanova, Y.M. Molecular epidemiology of tuberculosis: Objectives, methods, and prospects. Mol. Genet. Microbiol. Virol. 26, 1–9 (2011). https://doi.org/10.3103/S0891416811010034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416811010034

Keywords

Navigation