Skip to main content
Log in

Construction of genetically attenuated bacteria Bordetella pertussis devoid of dermonecrotic toxin activity that produces modified nontoxic form of pertussis toxin

  • Experimental Works
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

Recombinant (attenuated) bacteria Bordetella pertussis that contains a knock-out mutation in dnt gene and produces a nontoxic derivative of pertussis toxin have been constructed. Immunological properties of mutant bacteria B. pertussis of KS strain have studied. It is demonstrated that recombinant bacteria B. pertussis of KS strain devoid of activity of dermonecrotic toxin protect the structure of mutant dnt genes upon cultivation on selective nutrient media and long-term exposure in organisms of laboratory animals. The intranasal immunization of mice with live B. pertussis bacteria of the attenuated KS strain protects animals from infection with virulent strain of pertussis pathogen, which can be comparable with an OSO-3 industrial standard sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Instruktsiya po otboru, proverke i khraneniyu shtammov B. pertussis dlya izgotovleniya koklyushnoi vaktsiny i koklyushnogo komponenta assotsiirovannykh vaktsin (Instruction to Selection, Testing, and Storage of B. pertussis Strains for Preparation of Pertussis Vaccine and Pertussis Component of Associated Vaccines), Moscow, 1987.

  2. Maniatis, T., Fritsch, E. F., and Sambrook, J. Molecular Cloning, Cold Spring Harbor, New York: Cold Spring Harbor Lab. Press, 1982. Translated under the title Metody geneticheskoi inzhenerii. Molekulyarnoe klonirovanie Moscow: Mir, 1984.

    Google Scholar 

  3. Miller, J., Experiments in Molecular Genetics, New York: Cold Spring Harbor, 1982. Published under the title Eksperimenty v molekulyarnoi genetike, Moscow: Mir, 1984.

    Google Scholar 

  4. Sinyashina, L.N., Nechaeva, E.V., Amelina, I.P., and Karataev, G.I., Zh. Mikrobiol. Epidemiol. Immunobiol., 2009, no. 6, pp. 24–26.

  5. Chuprynina, R.P., Ozeretskovskii, N.A., and Alekseeva, I.A., Biopreparaty, 2001, no. 3, pp. 19–22.

  6. Centers for Disease Control and Prevention. Pertussis United States, 1997–2000, Morbid. Mortal Wkly Rep. 2002, vol. 51, pp. 73–76.

    Google Scholar 

  7. Diavatopoulos, D.A. Craig, A., et al., PLOS Pathogens, 2005, vol. 1, pp. 373–383.

    Article  CAS  Google Scholar 

  8. Guiso, N., Najmkepo, E., Vié le Sage, F., et al., Vaccine, 2007, vol. 25, pp. 1390–1397.

    Article  CAS  PubMed  Google Scholar 

  9. Gustafsson, L., Hallander, H.O., Olin, P., et al., N. Engl. J. Med., 1996, vol. 334, pp. 349–355.

    Article  CAS  PubMed  Google Scholar 

  10. Hewlett, E.L., Sauer, K.T., Myers, G.A., et al., Infect. Immun., 1983, vol. 40, pp. 1198–1203.

    CAS  PubMed  Google Scholar 

  11. Horiguchi, Y., Nakai, T., and Kume, K., Infect. Immun., 1991, vol. 59, pp. 1112–1116.

    CAS  PubMed  Google Scholar 

  12. Horiguchi, Y., Senda, T., Sugimoto, N., et al., J. Cell Sci., 1995, vol. 108, pp. 3243–3251.

    CAS  PubMed  Google Scholar 

  13. Kashimoto, T., Katahira, J., Cornejo, W.R., et al., Infect. Immun., 1999, vol. 67, pp. 3727–3732.

    CAS  PubMed  Google Scholar 

  14. Kume, K., Nakai, T., Samejima, T., and Sugimoto, C., Infect. Immun., 1986, vol. 52, pp. 370–377.

    CAS  PubMed  Google Scholar 

  15. Mattoo, S. and James, D., Clin. Microbiol. Rev., 2005, vol. 18, pp. 326–382.

    Article  CAS  PubMed  Google Scholar 

  16. Mielcarek, N., Debrie, A.-S., Raze, D., et al., PLOS Pathogens, 2006, vol. 2, pp. 662–670.

    Article  CAS  Google Scholar 

  17. Mooi, F.R., van Loo, I.H., and King, A.J., Emerg. Infect. Dis., 2001, vol. 7, pp. 526–528.

    Article  CAS  PubMed  Google Scholar 

  18. Parkhill, J., Sebaihia, M., Preston, A., et al., Nat. Genet., 2003, vol. 35, pp. 32–40.

    Article  PubMed  Google Scholar 

  19. Pizza, M., Covacci, A., Bartoloni, A., et al., Science, 1989, vol. 246, pp. 497–500.

    Article  CAS  PubMed  Google Scholar 

  20. Pullinger, G.D., Adams, T.E., Mullan, P.B., et al., Infect. Immun., 1996, vol. 64, pp. 4163–4171.

    CAS  PubMed  Google Scholar 

  21. Purdy, K.W., Hay, J.W., Botteman, M.F., and Ward, J.I., Clin. Infect. Dis., 2004, vol. 39, pp. 29–30.

    Article  Google Scholar 

  22. Schmidt, G., Goehring, U.M., Schirmer, J., et al., J. Biol. Chem., 1999, vol. 274, pp. 31875–31881.

    Article  CAS  PubMed  Google Scholar 

  23. Stevenson, A. and Roberts, M., FEMS Immunol. Med. Microbiol., 2003, vol. 37, pp. 121–128.

    Article  CAS  PubMed  Google Scholar 

  24. Stibitz, S. and Miller, J.F., in Molecular Genetics of Bacterial Pathogenesis, Miller, V.L., et al., Ed., Washington, 1994, pp. 407–422.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © L.N. Sinyashina, L.S. Sinyashina, E.G. Semin, I.P. Amelina, G.I. Karataev, 2010, published in Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya, 2010, No. 3, pp. 31–36.

About this article

Cite this article

Sinyashina, L.N., Sinyashina, L.S., Semin, E.G. et al. Construction of genetically attenuated bacteria Bordetella pertussis devoid of dermonecrotic toxin activity that produces modified nontoxic form of pertussis toxin. Mol. Genet. Microbiol. Virol. 25, 124–131 (2010). https://doi.org/10.3103/S0891416810030067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416810030067

Keywords

Navigation