Skip to main content
Log in

Mass-spectrometry analysis of genetic markers of S. pneumoniae resistance to β-lactam antibiotics

  • Experimental Works
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

Despite the growing level of resistance to Streptococcus pneumoniae infections, β-lactam antibiotics remain the drugs of choice treating these infections. The resistance of S. pneumoniae to these preparations is mediated by modifications of penicillin-binding proteins (PBPs), which are the targets of antibiotics action. The new approach to detecting mutations in the PBP 1A, 2B, and 2X genes based on the minise-quencing reaction followed by matrix-assisted laser desorption/ionization time of flight (MALDI-ToF) mass spectrometry has been developed in the present study. The evaluation of the prevalence of these mutations in clinical S. pneumoniae isolates (n = 194) with different levels of susceptibility to beta-lactam antibiotics has been performed. In summary, 24 different combinations of mutations (genotypes) have been detected in PBPs. All penicillin-susceptible isolates (n = 49, MIC ≤ 0.06 μg/ml) were characterized by the absence of mutations in all analyzed loci. In PBPs, mutations were detected in 133 (91.7%) out of 145 S. pneumoniae isolates with reduced susceptibility to penicillin (MIC > 0.06 μg/ml), which indicates the high diagnostic sensitivity of this approach. Isolates with MIC → 4 μg/ml (n = 20) possessed multiple mutations in all analyzed genes, which confirms the cumulative effects of the formation of penicillin resistance. At the same time, no association between the presence of mutations in PBP genes and decreased susceptibility to cefotaxime was shown, which makes it possible to suggest significant differences in molecular mechanisms of penicillins and cephalosporins resistance. The suggested method of S. pneumoniae genotyping is appropriate for the individual screening of the susceptibility of isolates to penicillin and the molecular monitoring of the resistance determinants in population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vereshchagin, V.A., Il’ina, E.N., Zubkov, M.M., et al., Mol. Biol., 2005, vol. 39, no. 6, pp. 923–932.

    Article  CAS  Google Scholar 

  2. Kozlov, R.S., Sivaya, O.V., Shpynev, K.V., et al., Klin. Mikrobiol. Antimikrob. Khimioter., 2006, vol. 8, no. 1, pp. 33–47.

    Google Scholar 

  3. Malakhova, M.V., Vereshchagin, V.A., and Il’ina, E.N., et al., Byul. Eksper. Biol., 2006, vol. 141, no. 5, pp. 549–554.

    Article  Google Scholar 

  4. Metodicheskie ukazaniya po opredeleniyu chuvstvitel’nosti mikroorganizmov k antibakterial’nym preparatam: Metod. ukazaniya MUK 4.2.1890-04 (Guidelines to Determination of Sensitivity of Microorganisms to Antibacterial Preparations MUK 4.2.1890-04), Moscow, 2004.

  5. Chuchalin, A.G., Sinopal’nikov, A.I., Strachunskii, L.S., et al., Klin. Mikrobiol. Antimikrob. Khimioter., 2006, vol. 8, no. 1, pp. 54–86.

    Google Scholar 

  6. Asahi, Y., Takeuchi, Y., and Ubukata, K., Antimicrob. Agents Chemother., 1999, vol. 43, no. 5, pp. 1252–1255.

    CAS  PubMed  Google Scholar 

  7. Carapito, R., Chesnel, L., Vernet, T., et al., J. Biol. Chem., 2006, vol. 281, no. 3, pp. 1771–1777.

    Article  CAS  PubMed  Google Scholar 

  8. Centers for Disease Control and Prevention, Morbid. Mortal. Wkly Rep., 1997, vol. 46, pp. 1–24.

    Google Scholar 

  9. Chesnel, L., Carapito, R., Croizé, J., et al., Antimicrob. Agents Chemother., 2005, vol. 49, no. 7, pp. 2895–2902.

    Article  CAS  PubMed  Google Scholar 

  10. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically: Approved Standard, 8th Ed. (M07-A8), Wayne: Clinical and Laboratory Standards Institute, 2009.

  11. Performance Standard for Antimicrobial Susceptibility Testing, 19th Informational Suppl. (M100-S19), Wayne: Clinical and Laboratory Standards Institute, 2009.

  12. Dias, R., Félix, D., Canica, M., et al., BMC Microbiol., 2009, vol. 9, p. 121.

    Article  PubMed  Google Scholar 

  13. EUCAST. http://www.eucast.org.

  14. Goffin, C. and Ghyusen, J.M., Microbiol. Mol. Biol. Rev., 1998, vol. 62, no. 4, pp. 1079–1093.

    CAS  PubMed  Google Scholar 

  15. Grebe, T. and Hakenbeck, R., Antrimicrob. Agents Chemother., 1996, vol. 40, no. 4, pp. 829–834.

    CAS  Google Scholar 

  16. Hakenbeck, R., Konig, A., Kern, I., et al., J. Bacteriol., 1998, vol. 180, no. 7, pp. 1831–1840.

    CAS  PubMed  Google Scholar 

  17. Hakenbeck, R., Grebe, T., Zähner, D., et al., Mol. Microbiol., 1999, vol. 33, no. 4, pp. 673–678.

    Article  CAS  PubMed  Google Scholar 

  18. Klugman, K.P., Clin. Microbiol. Rev., 1990, vol. 3, no. 2, pp. 171–196.

    CAS  PubMed  Google Scholar 

  19. Krauss, J., van der Linden, M., Grebe, T., et al., Microb. Drug Resist., 1996, vol. 2, no. 2, pp. 183–186.

    Article  CAS  PubMed  Google Scholar 

  20. Lopez, R., Int. Microbiol., 2004, vol. 7, no. 3, pp. 163–171.

    PubMed  Google Scholar 

  21. Lynch, J.P., 3rd and Zhanel, G.G, Semin. Respir. Crit. Care Med., 2009, vol. 30, no. 2, pp. 210–238.

    Article  PubMed  Google Scholar 

  22. Nichol, K.A., Zhanel, G.G., and Hoban, D.J., Antimicrob. Agents Chemother., 2002, vol. 46, no. 10, pp. 3261–3264.

    Article  CAS  PubMed  Google Scholar 

  23. Sauvage, E., Kerff, F., Terrak, M., et al., FEMS Microbiol. Rev., 2008, vol. 32, no. 2, pp. 234–258.

    Article  CAS  PubMed  Google Scholar 

  24. Smith, A.M. and Klugman, K.P., Antimicrob. Agents Chemother., 2001, vol. 45, no. 8, pp. 2393–2396.

    Article  CAS  PubMed  Google Scholar 

  25. Stanhope, M.J., Lefébure, T., Walsh, S.L., et al., Infect. Genet. Evol, 2008, vol. 8, no. 3, pp. 331–339.

    Article  CAS  PubMed  Google Scholar 

  26. Tait-Kamradt, A.G., Cronan, M., and Dougherty, T.J., Microb. Drug Resist., 2009, vol. 15, no. 2, pp. 69–75.

    Article  CAS  PubMed  Google Scholar 

  27. Zapun, A., Contreras-Martel, C., and Vernet, T., FEMS Microbiol. Rev., 2008, vol. 32, no. 2, pp. 361–385.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © T.A. Savinova, E.N. Il’ina, S.V. Sidorenko, 2010, published in Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya, 2010, No. 3, pp. 16–25.

About this article

Cite this article

Savinova, T.A., Il’ina, E.N. & Sidorenko, S.V. Mass-spectrometry analysis of genetic markers of S. pneumoniae resistance to β-lactam antibiotics. Mol. Genet. Microbiol. Virol. 25, 106–117 (2010). https://doi.org/10.3103/S0891416810030043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416810030043

Key words

Navigation