Skip to main content
Log in

Lipid-associated membrane lipopeptides of M. arginini activate NF-κB by interacting with TLR2/1, TLR2/6, and TLR2/CD14

  • Experimental Works
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

Various strains of mycoplasmas cause the activation of transcriptional factor NF-κB as a result of interactions with different combinations of Toll-like receptors (TLRs). It is well known that MALP-2 protein of M. fermentans activates NF-κB through interactions with TLR2/6, activates lipid-associated membrane lipopeptides (LAMPs) of M. penetrans through TLR1/2, activates LAMPs of M. pneumoniae through combinations of Toll-like receptors (TLR2/6 and TLR1/2), and activates the superantigene of M. arthritidis through TLR2- and TLR4-dependent pathways. In this study, we defined specific Toll-like receptors for LAMPs of M. arginini. For carrying out the research, we used the following cell lines, which express certain combinations of TLRs and their coreceptors: 293-null, 293-hTLR2, 293-hTLR1/2, 293-hTLR2/CD14, 293-hTLR2/6, and 293-hTLR4/CD14-MD2. It was shown that LAMPs of M. arginini cause the activation of NF-κB by interacting with TLR2/1, TLR2/6 and TLR2/CD14, but not with TLR2 or TLR4 alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Polyanskaya, G.G. and Efremova, T.E., Tsitologiya, 2000, vol. 42, no. 8, pp. 794–801.

    Google Scholar 

  2. Barton, G.M. and Medzhitov, R.T., Curr. Top. Microbiol. Immunol., 2002, vol. 270, pp. 81–92.

    PubMed  CAS  Google Scholar 

  3. Barton, G.M. and Medzhitov, R., Science, 2003, vol. 300, no. 5625, pp. 1524–1525.

    Article  PubMed  CAS  Google Scholar 

  4. Brasier, A.R., Cardiovasc. Toxicol., 2006, vol. 6, no. 2, pp. 111–130.

    Article  PubMed  CAS  Google Scholar 

  5. Carmody, R.J. and Chen, Y.H., Cell. Mol. Immunol., 2007, vol. 4, no. 1, pp. 31–41.

    PubMed  CAS  Google Scholar 

  6. Darnay, B.G., Ni, J., Moore, P.A., and Aggarwal, B.B., J. Biol. Chem., 1999, vol. 274, no. 12, pp. 7724–7731.

    Article  PubMed  CAS  Google Scholar 

  7. Hayden, M.S., West, A.P., and Ghosh, S., Oncogene, 2006, vol. 25, no. 51, pp. 6758–6780.

    Article  PubMed  CAS  Google Scholar 

  8. Ishikawa, Y., Kozakai, T., Morita, H., et al., In Vitro Cell Dev. Biol. Anim., 2006, vol. 42, nos. 3–4, pp. 63–69.

    Article  PubMed  CAS  Google Scholar 

  9. Kopp, E. and Medzhitov, R., Curr. Opin. Immunol., 2003, vol. 15, no. 4, pp. 396–401.

    Article  PubMed  CAS  Google Scholar 

  10. Lührmann, A., Grote, K., Stephan, M., et al., Immunol. Lett., 2007, vol. 108, no. 2, pp. 167–173.

    Article  PubMed  Google Scholar 

  11. Mitsunari, M., Yoshida, S., Shoji, T., et al., J. Reprod. Immunol., 2006, vol. 72, nos. 1–2, pp. 46–59.

    Article  PubMed  CAS  Google Scholar 

  12. Mu, H.H., Humphreys, I., Chan, F.V., and Cole, B.C., Cell Microbiol., 2006, vol. 8, no. 3, pp. 414–426.

    Article  PubMed  CAS  Google Scholar 

  13. Okamoto, T., Sanda, T., and Asamitsu, K., Curr Pharm. Des., 2007, vol. 13, no. 5, pp. 447–462.

    Article  PubMed  CAS  Google Scholar 

  14. Shimizu, T., Kida, Y., and Kuwano, K.L., Immunology, 2004, vol. 113, no. 1, pp. 121–129.

    Article  PubMed  CAS  Google Scholar 

  15. Shimizu, T., Kida, Y., and Kuwano, K., J. Immunol., 2005, vol. 175, no. 7, pp. 4641–4646.

    PubMed  CAS  Google Scholar 

  16. You, X.X., Zeng, Y.H., and Wu, Y.M., J. Zhejiang Univ. Sci. B, 2006, vol. 7, no. 5, pp. 342–350.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © D.Y. Logunov, D.V. Scheblyakov, O.V. Zubkova, M.M. Shmarov, I.V. Rakovskaya, A.L. Gintsburg, A.V. Gudkov, B.S. Naroditskii, 2009, published in Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya, 2009, No. 2, pp. 25–28.

About this article

Cite this article

Logunov, D.Y., Scheblyakov, D.V., Zubkova, O.V. et al. Lipid-associated membrane lipopeptides of M. arginini activate NF-κB by interacting with TLR2/1, TLR2/6, and TLR2/CD14. Mol. Genet. Microbiol. Virol. 24, 72–75 (2009). https://doi.org/10.3103/S0891416809020050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416809020050

Keywords

Navigation