Skip to main content
Log in

A kinetic analysis of the thermochemical conversion of solid fuels (A review)

  • Published:
Solid Fuel Chemistry Aims and scope Submit manuscript

Abstract

The overview is focused on methods for the processing of kinetic curves (with and without models). The paper demonstrates that the kinetics of thermochemical conversion of solid fuels can be described by a great number of kinetic processing methods, which lead to inconsistent estimates of kinetic coefficients. They give a rather simple approximation of experimental thermogravimetric curves. However, the kinetic triplet to be determined (activation energy, order of reaction, and preexponential factor) depends on the conditions of thermoanalytical studies and (to a greater extent) on the reactivity of the test fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Di Blasi, C., Prog. Energy Combust. Sci., 2008, vol. 34, p. 47.

    Article  Google Scholar 

  2. Biagini, E., Fantel, A., and Tognotti, L., Thermochim. Acta, 2008, vol. 472, p. 55.

    Article  CAS  Google Scholar 

  3. De Micco, G., Nasjleti, A., and Bohe, A.E., Fuel, 2012, vol. 95, p. 537.

    Article  Google Scholar 

  4. Fermoso, J., Arias, B., Pevida, C., Plaza, M.G., Rubiera, F., and Pis, J.J., Thermal Anal. Calorimetr., 2008, vol. 91, no. 3, p. 779.

    Article  CAS  Google Scholar 

  5. Fang, X., Jia, L., and Yin, L., Biom. Bioenerg., 2013, vol. 48, p. 43.

    Article  CAS  Google Scholar 

  6. Flammersheim, H.J. and Opfermann, J., Thermochim. Acta, 1999, vol. 337, p. 141.

    Article  CAS  Google Scholar 

  7. Opfermann, J., Kaiserberger, E., and Flammersheim, H.J., Thermochim. Acta, 2002, vol. 391, p. 119.

    Article  CAS  Google Scholar 

  8. House, J.E., Principles of Chemical Kinetics, London Elsevier, 2007.

    Google Scholar 

  9. Sestak, J., Thermochim. Acta, 2015, vol. 611, p. 26.

    Article  CAS  Google Scholar 

  10. Moukhina, E., Thermal Anal. Calorimetr., 2012, vol. 109, no. 3, p. 1203.

    Article  CAS  Google Scholar 

  11. Gallagher, P.K., Techniques and Applications, Amsterdam Elsevier, 2008.

    Google Scholar 

  12. Ozawa, T., Thermal Anal. Calorimetr., 2000, vol. 60, p. 887.

    Article  CAS  Google Scholar 

  13. ASTM 698-05: Annual Book of ASTM Standards, West Conshohocken, PA.: ASTM International, 2005, vol. 14.02, p. 226.

    Google Scholar 

  14. Kissinger, H.E., Anal. Chem., 1957, vol. 29, no. 11, p. 1703.

    Article  Google Scholar 

  15. Friedman, H.L., J. Polymer Sci.: Polymer Lett., 1969, vol. 7, no. 1, p. 41.

    Article  CAS  Google Scholar 

  16. Flynn, J.H., Thermochim. Acta, 1997, vol. 300, p. 83.

    Article  CAS  Google Scholar 

  17. Doyle, C.D., J. Appl. Pol. Sci., 1962, vol. 5, p. 285.

    Article  Google Scholar 

  18. Koga, N., Thermal Anal. Calorimetr., 2013, vol. 113, p. 1527.

    Article  CAS  Google Scholar 

  19. Flynn, J.H. and Wall, L.A., Polymer Lett., 1966, vol. 4, no. 5, p. 323.

    Article  CAS  Google Scholar 

  20. Coats, A.W. and Redfern, J.P., Nature, 1964, vol. 201, p. 68.

    Article  CAS  Google Scholar 

  21. Coats, A.W. and Redfern, J.P., Polymer Sci., 1965, vol. 3, p. 917.

    Article  CAS  Google Scholar 

  22. Fisher, P.E., Jou, C.S., and Gokalgandchi, S.S., Industr. Eng. Chem. Res., 1987, vol. 26, p. 1037.

    Article  Google Scholar 

  23. White, J.E., Cattalo, W.J., and Legendre, B.L., Anal. Appl. Pyr., 2011, vol. 91, p. 1.

    Article  CAS  Google Scholar 

  24. Budrugeac, P., Petre, A.L., and Segal, E., Thermal Anal. Calorimetr., 1997, vol. 56, p. 123.

    Google Scholar 

  25. Senum, G.I. and Yang, R.T., Thermal Anal., 1977, vol. 11, p. 445.

    Article  Google Scholar 

  26. Gao, Z., Wang, H., and Nakada, M., Polymer, 2006, vol. 47, p. 1590.

    Article  CAS  Google Scholar 

  27. Vyazovkin, S. and Wight, C.A., Ann. Rev. Phys. Chem., 1997, vol. 4, p. 125.

    Article  Google Scholar 

  28. Junpirom, S., Tangsathihulchai, C., and Tangsathihulchai, M., Korean Chem. Eng., 2010, vol. 27, p. 791.

    Article  CAS  Google Scholar 

  29. Prakash, N. and Karunanithi, T., Appl. Sci. Res., vol. 12, no. 4, p. 1627.

  30. Sadhukhan, A.K., Gupta, P., and Saha, R.K., Biores. Tech., 2009, vol. 100, p. 3134.

    Article  CAS  Google Scholar 

  31. Sommariva, S., Maffei, E., Migliavacca, G., and Faravelli, T., Fuel, 2010, vol. 89, p. 318.

    Article  CAS  Google Scholar 

  32. Opfermann, J., Thermal Anal. Calorimetr., 2000, vol. 60, p. 641.

    Article  CAS  Google Scholar 

  33. Pomerantsev, A.L., Doctoral (Phys.–Math.) Dissertation, Moscow Inst. Chem. Phys., Russ. Acad. Sci., 2003.

    Google Scholar 

  34. Haixiang, C., Naian, L., and Weitao, Z., Solid State Sci., 2010, vol. 12, p. 455.

    Article  Google Scholar 

  35. Hu, S., Jess, A., and Xu, M., Fuel, 2007, vol. 86, p. 2778.

    Article  CAS  Google Scholar 

  36. El-Sayed, S.A. and Mostafa, M.E., Ener. Conver. Manag., 2014, vol. 85, p. 165.

    Article  Google Scholar 

  37. Guangwei, W., Jianliang, Z., and Jiugang, S., Int. Minin. Sci. Tech., 2015, vol. 25, p. 15.

    Article  Google Scholar 

  38. Shen, D.K., Gu, S., and Luo, K.H., Fuel, 2009, vol. 88, p. 1024.

    Article  CAS  Google Scholar 

  39. Cai, J.M. and Bi, L.S., Thermal Anal. Calorimetr., 2009, vol. 98, no. 3, p. 325.

    Article  CAS  Google Scholar 

  40. Mar’yandyshev, P.A., Chernov, A.A., and Lyubov, V.K., Khim. Tverd. Topl. (Moscow), 2015, no. 2, p. 59.

    Google Scholar 

  41. Aboyade, A.O., Hugo, T.J., Carrier, M., Meyer, E.L., Stahl, R., Knoetze, J.H., and Gorgens, J.F., Thermochimica Ac, 2011, vol. 517, p. 81.

    Article  CAS  Google Scholar 

  42. Vyazovkin, S., Burnham, A.K., Criado, J.M., Perez-Maqueda, L.A., Popescu, C., and Sbirrazzuoli, N., Thermochim. Acta, 2011, vol. 520, p. 1.

    Article  CAS  Google Scholar 

  43. Amutio, M., Lopez, G., and Aguado, R., Fuel, 2012, vol. 95, p. 305.

    Article  CAS  Google Scholar 

  44. Chen, W.-H. and Kuo, P.-C., Energy, 2011, vol. 36, p. 6451.

    Article  CAS  Google Scholar 

  45. Asadieraghi, M. and Wan, DaudW.M.A., Energy Convers. Manage., 2014, vol. 82, p. 71.

    Article  CAS  Google Scholar 

  46. Boiko, E.A., Pachkovskii, S.V., and Didichin, D.G., Fiz. Goreniya Vzryva, 2005, vol. 41, p. 55.

    CAS  Google Scholar 

  47. Su, Y., Luo, Y., and Wu, W., Anal. App. Pyr., 2012, vol. 98, p. 137.

    Article  CAS  Google Scholar 

  48. Watanabe, H., Tanno, K., Umetsu, H., and Umento, S., Fuel, 2015, vol. 142, p. 250.

    Article  CAS  Google Scholar 

  49. Kramb, J., Konttinen, J., Gomez-Barea, A., Moilanen, A., and Umeki, K., Fuel, 2014, vol. 132, p. 107.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Kozlov.

Additional information

Original Russian Text © A.N. Kozlov, D.A. Svishchev, G.I. Khudiakova, A.F. Ryzhkov, 2017, published in Khimiya Tverdogo Topliva, 2017, No. 4, pp. 12–21.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlov, A.N., Svishchev, D.A., Khudiakova, G.I. et al. A kinetic analysis of the thermochemical conversion of solid fuels (A review). Solid Fuel Chem. 51, 205–213 (2017). https://doi.org/10.3103/S0361521917040061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0361521917040061

Navigation