Skip to main content
Log in

Possibilities of bioconversion of agricultural waste with the use of microalgae

  • Ecology
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract

A new methodology of biological treatment and conversion of farm waste (manure and wash water) with the use of intensively cultivated phototrophic microorganisms (microalgae) is reviewed. Criteria for selection of microalgae and peculiarities of their intensive cultivation for efficient removal of biogenic elements from and destruction of the organic components of the wastes as well as the possibilities of cost-effective utilization of the resulting microalgal biomass are considered. Advantages and drawbacks of the new methodology are compared with those of conventional anaerobic techniques. Special attention is paid to the integrated technologies combining the aerobic conversion methods with microalgal post-treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mulbry, W., Kondrad, S., Pizarro, C., and KebedeWesthead, E., Treatment of dairy manure effluent using freshwater algae: algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers, Bioresour. Technol., 2008, vol. 99, pp. 8137–8142.

    Article  CAS  PubMed  Google Scholar 

  2. Kim, M.K., Park, J.W., Park, C.S., Kim, S.J., Jeune, K.H., Chang, M.U., and Acreman, J., Enhanced production of Scenedesmus spp. (green microalgae) using a new medium containing fermented swine wastewater, Bioresour. Technol., 2007, vol. 98, pp. 2220–2228.

    Article  CAS  PubMed  Google Scholar 

  3. Ntp 17-99. Normy tekhnologicheskogo proektirovaniya sistem udaleniya i podgotovki k ispol’zovaniyu navoza i pometa (Ntp 17-99. Engineering Standards for the Systems for Removal and Preparation of Manure and Dung for Use), Moscow: Minist. S-kh. Ross. Fed., 2001.

  4. Afanas’ev, A., Analysis of technologies for processing manure and dung, Vestn. Vseross. Nauchno-Issled. Proektno-Tekhnol. Inst. Mekhaniz. Zhivotnovod., 2012, vol. 4, pp. 28–35.

    Google Scholar 

  5. Oswald, W.J. and Gotaas, H.B., Photosynthesis in sewage treatment, Trans. Am. Soc. Civ. Eng., 1957, vol. 122, pp. 73–105.

    Google Scholar 

  6. Sivakumar, G., Xu, J., Thompson, R.W., Yang, Y., Randol-Smith, P., and Weathers, P.J., Integrated green algal technology for bioremediation and biofuel, Bioresour. Technol., 2011.

    Google Scholar 

  7. Munoz, R. and Guieysse, B., Algal-bacterial processes for the treatment of hazardous contaminants: a review, Water Res., 2006, vol. 40, pp. 2799–2815.

    Article  CAS  PubMed  Google Scholar 

  8. Mallick, N., Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review, BioMetals, 2002, vol. 15, pp. 377–390.

    Article  CAS  PubMed  Google Scholar 

  9. Crawford, M., Golfetto, I., Ghebremeskel, K., Min, Y., Moodley, T., Poston, L., Phylactos, A., Cunnane, S., and Schmidt, W., The potential role for arachidonic and docosahexaenoic acids in protection against some central nervous system injuries in preterm infants, Lipids, 2003, vol. 38, pp. 303–315.

    Article  CAS  PubMed  Google Scholar 

  10. Wang, X., Lin, H., and Gu, Y., Multiple roles of dihomo-gamma-linolenic acid against proliferation diseases, Lipids Health Dis., 2012, vol. 11, p. 25.

    Article  Google Scholar 

  11. Cohen, Z. and Khozin-Goldberg, I., Searching for PUFA-rich microalgae, Single Cell Oils, Cohen, Z. and Ratledge, C., Eds., Champaign, IL: American Oil Chemists’ Society, 2010, pp. 201–224.

    Google Scholar 

  12. Guschina, I.A. and Harwood, J.L., Algal lipids and their metabolism, Algae for Biofuels and Energy, Borowitzka, M.A. and Moheimani, N.R., Eds., Dordrecht: Springer, 2013, pp. 17–36.

    Chapter  Google Scholar 

  13. Dhankhar, J., Kadian, S.S., and Sharma, A., Astaxanthin: a potential carotenoid, Int. J. Pharm. Sci. Res., 2012, vol. 3, pp. 1246–1259.

    CAS  Google Scholar 

  14. Takaichi, S., Carotenoids in algae: distributions, biosyntheses and functions, Mar. Drugs, 2011, vol. 9, pp. 1101–1118.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Park, J.B.K., Craggs, R.J., and Shilton, A.N., Wastewater treatment high rate algal ponds for biofuel production, Bioresour. Technol., 2011, vol. 102, pp. 35–42.

    Article  CAS  PubMed  Google Scholar 

  16. Georgianna, D.R. and Mayfield, S.P., Exploiting diversity and synthetic biology for the production of algal biofuels, Nature, 2012, vol. 488, pp. 329–335.

    Article  CAS  PubMed  Google Scholar 

  17. Pittman, J.K., Dean, A.P., and Usundeko, O., The potential of sustainable algal biofuel production using wastewater resources, Bioresour. Technol., 2011, vol. 102, pp. 17–25.

    Article  CAS  PubMed  Google Scholar 

  18. Fu, W., Guemundsson, O., Paglia, G., Herjolfsson, G., Andresson, O., Palsson, B., and Brynjolfsson, S., Enhancement of carotenoid biosynthesis in the green microalgal Dunaliella salina with light-emitting diodes and adaptive laboratory evolution, Appl. Microbiol. Biotechnol., 2013, vol. 97, pp. 2395–2403.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Vance, C.P., Uhde-Stone, C., and Allan, D., L. phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource, New Phytol., 2003, vol. 157, pp. 423–447.

    Article  CAS  Google Scholar 

  20. Lebedev, E., Possible environmental consequences of excessive use of nitrogen fertilizers, in Mineral’nyi i biologicheskii azot v SSSR (Mineral and Organic Nitrogen in the USSR), Moscow: Nauka, 1985, pp. 41–60.

    Google Scholar 

  21. Carpenter, S.R., Caraco, N.F., Correll, D.L., Howarth, R.W., Sharpley, A.N., and Smith, V.H., Nonpoint pollution of surface waters with phosphorus and nitrogen, Ecol. Appl., 1998, vol. 8, pp. 559–568.

    Article  Google Scholar 

  22. Mulbry, W., Kondrad, S., and Buyer, J., Treatment of dairy and swine manure effluents using freshwater algae: fatty acid content and composition of algal biomass at different manure loading rates, J. Appl. Phycol., 2008, vol. 20, pp. 1079–1085.

    Article  Google Scholar 

  23. Mulbry, W., Westhead, E.K., Pizarro, C., and Sikora, L., Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer, Bioresour. Technol., 2005, vol. 96, pp. 451–458.

    Article  CAS  PubMed  Google Scholar 

  24. Olguin, E.J., Phycoremediation: key issues for costeffective nutrient removal processes, Biotechnol. Adv., 2003, vol. 22, pp. 81–91.

    Article  CAS  PubMed  Google Scholar 

  25. Aslan, S. and Kapdan, I.K., Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae, Ecol. Eng., 2006, vol. 28, pp. 64–70.

    Article  Google Scholar 

  26. Ruiz-Marin, A., Mendoza-Espinosa, L.G., and Stephenson, T., Growth and nutrient removal in free and immobilized green algae n batch and semi-continuous cultures treating real wastewater, Bioresour. Technol., 2010, vol. 101, pp. 58–64.

    Article  CAS  PubMed  Google Scholar 

  27. Kebede-Westhead, E., Pizarro, C., and Mulbry, W.W., Treatment of swine manure effluent using freshwater algae: production, nutrient recovery, and elemental composition of algal biomass at four effluent loading rates, J. Appl. Phycol., 2006, vol. 18, pp. 41–46.

    Article  Google Scholar 

  28. Lincoln, E., Wilkie, A., and French, B., Cyanobacterial process for renovating dairy wastewater, Biomass Bioenergy, 1996, vol. 10, pp. 63–68.

    Article  CAS  Google Scholar 

  29. Pizarro, C., Mulbry, W., Blersch, D., and Kangas, P., An economic assessment of algal turf scrubber technology for treatment of dairy manure effluent, Ecol. Eng., 2006, vol. 26, pp. 321–327.

    Article  Google Scholar 

  30. Travieso, L., Benitez, F., and Dupeiron, R., Sewage treatment using immobilized microalgae, Bioresour. Technol., 1992, vol. 40, pp. 183–187.

    Article  CAS  Google Scholar 

  31. Hoffman, J.P., Wastewater treatment with suspended and nonsuspended algae, J. Phycol., 2002, vol. 34, pp. 757–763.

    Article  Google Scholar 

  32. Jimenez-Perez, M., Sanchez-Castillo, P., Romera, O., Fernandez-Moreno, D., and Perez-Martinez, C., Growth and nutrient removal in free and immobilized planktonic green algae isolated from pig manure, Enzyme Microb. Technol., 2004, vol. 34, pp. 392–398.

    Article  CAS  Google Scholar 

  33. Richmond, A., Principles for attaining maximal microalgal productivity in photobioreactors: an overview, Hydrobiologia, 2004, vol. 512, pp. 33–37.

    Article  Google Scholar 

  34. Zarmi, Y., Bel, G., and Aflalo, G., Theoretical analysis of culture growth in glat-plate bioreactors: the essential role of timescales, Handbook of Microalgal Culture, Richmond, A. and Hu, Q., Eds., Wiley-Blackwell, 2013, pp. 205–224.

    Chapter  Google Scholar 

  35. Lee, C.G. and Palsson, B., High-density algal photobioreactors using light-emitting diodes, Biothechnol. Bioeng., 1994, vol. 44, pp. 1161–1167.

    Article  CAS  Google Scholar 

  36. Richmond, A., Cheng-Wu, Z., and Zarmi, Y., Efficient use of strong light for high photosynthetic productivity: interrelationships between the optical path, the optima population density and cell-growth inhibition, Biomol. Eng., 2003, vol. 20, pp. 229–236.

    Article  CAS  PubMed  Google Scholar 

  37. Vejrazka, C., Janssen, M., Streefland, M., and Wijffels, R.H., Photosynthetic efficiency of Chlamydomonas reingardtii in attenuated, flashing light, Biotechnol. Bioeng., 2012.

    Google Scholar 

  38. Konig, A., Pearson, H., and Silva, S.A., Ammonia toxicity to algal growth in waste stabilization ponds, Water Sci. Technol., 1987, vol. 19, pp. 115–122.

    CAS  Google Scholar 

  39. Masseret, E., Amblard, C., Bourdier, G., and Sargos, D., Effects of a waste stabilization lagoon discharge on bacterial and phytoplanktonic communities of a stream, Water Environ. Res., 2000, vol. 72, pp. 285–294.

    Article  CAS  Google Scholar 

  40. Javanmardian, M. and Palsson, B.O., High-density photoautotrophic algal cultures: design, construction, and operation of a novel photobioreactor system, Biotechnol. Bioeng., 2004, vol. 38, pp. 1182–1189.

    Article  Google Scholar 

  41. Chen, C.-Y., Yeh, K.-L., Aisyah, R., Lee, D.-J., and Chang, J.-S., Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review, Bioresour. Technol., 2011, vol. 102, pp. 71–81.

    Article  CAS  PubMed  Google Scholar 

  42. Ugwu, C.U., Aoyagi, H., and Uchiyama, H., Photobioreactors for mass cultivation of algae, Bioresour. Technol., 2008, vol. 99, pp. 4021–4028.

    Article  CAS  PubMed  Google Scholar 

  43. Camacho, RubioF., Sanchez, MironA., Ceron, GarciaM., Garcia, CamachoF., Molina, GrimaE., and Chisti, Y., Mixing in bubble columns: a new approach for characterizing dispersion coefficients, Chem. Eng. Sci., 2004, vol. 59, pp. 4369–4376.

    Article  Google Scholar 

  44. Holland, A.D. and Wheler, D.R., Intrinsis autotrophic biomass yield and productivity in algae: modeling spectral and mixing-rate dependence, Biotechnol. J., 2011, vol. 6, pp. 584–599.

    Article  CAS  PubMed  Google Scholar 

  45. Guschina, I.A. and Harwood, J.L., Algla lipids and effect of the environment on their biochemistry, in Lipids in Aquatic Ecosystems, Kainz, M., Brett, M., and Arts, M., Eds., Dordrecht: Springer, 2009, pp. 1–24.

    Chapter  Google Scholar 

  46. Lau, P., Tam, N., and Wong, Y., Effect of algal density on nutrient removal from primary settled wastewater, Environ. Pollut., 1995, vol. 89, pp. 59–66.

    Article  CAS  Google Scholar 

  47. Lavoie, A. and de la Noue, J., Hyperconcentrated cultures of Scenedesmus obliquus: a new approach for wastewater biological tertiary treatment? Water. Res., 1985, vol. 19, pp. 1437–1442.

    Article  CAS  Google Scholar 

  48. Johnson, M.B. and Wen, Z., Development of an attached microalgal growth system for biofuel production, Appl. Microbiol. Biotechnol., 2010, vol. 85, pp. 525–534.

    Article  CAS  PubMed  Google Scholar 

  49. Abeliovich, A. and Azov, Y., Toxicity of ammonia to algae in sewage oxidation ponds, Appl. Environ. Microbiol., 1976, vol. 31, p. 801.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Azov, Y. and Goldman, J.C., Free ammonia inhibition of algal photosynthesis in intensive cultures, Appl. Environ. Microbiol., 1982, vol. 43, p. 735.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Brennan, L. and Owende, P., Biofuels form microalgae: a review of technologies for production, processing, and extractions of biofuels and co-products, Renewable Sustainable Energy Rev., 2010, vol. 14, pp. 557–577.

    Article  CAS  Google Scholar 

  52. Solovchenko, A., Lobakova, E., Barskii, E., Savanina, Ya., Dol’nikova, G., Luk’yanov, A., and Kirpichnikov, M., Environmental photobiotechnologies for sewage treatment, Biotekhnologiya, 2011, no. 6.

    Google Scholar 

  53. Abeliovich, A., Water purification: algae in wastewater oxidation ponds, Handbook of Microalgal Culture: Biotechnology and Applied Phycology, Richmond, A., Ed., Blackwell, 2004, pp. 430–438.

    Google Scholar 

  54. Grobbelaar, J., Microalgal biomass productions: challenges and realities, Photosynth. Res., 2010, vol. 106, pp. 135–144.

    Article  CAS  PubMed  Google Scholar 

  55. Morweiser, M., Kruse, O., Hankamer, B., and Posten, C., Developments and perspectives of photobioreactors for biofuel production, Appl. Microbiol. Biotehcnol., 2010, vol. 887, pp. 1–11.

    Google Scholar 

  56. Molina, GrimaE., Fernandez, F., Garcia, CamachoF., and Chisti, Y., Photobioreactors: light regime, mass transfer, and scaleup, J. Biotehcnol., 1999, vol. 70, pp. 231–247.

    Google Scholar 

  57. Pulz, O. and Scheibenbogen, K., Photobioreactors: design and performance with respect to light energy input, Bioprocess and Algae Reactor Technology, Scheper, T., Ed., Berlin: Springer, 1998, pp. 123–152.

    Chapter  Google Scholar 

  58. Bashan, L.E. and Bashan, Y., Immobilized microalgae for removing pollutants: review of practical aspects, Bioresour. Technol., 2010, vol. 101, pp. 1611–1627.

    Article  PubMed  Google Scholar 

  59. Abe, K., Takahashi, E., and Hirano, M., Development of laboratory-scale photobioreactor for water purification by use of a biofilter composed of the aerialmicroalga Trentepohlia aurea (Chlorophyta), J. Appl. Phycol., 2008, vol. 20, pp. 283–288.

    Article  CAS  Google Scholar 

  60. Zhang, E., Wang, B., Wang, Q., Zhang, S., and Zhao, B., Ammonia-nitrogen and orthophosphate removal by immobilized Scenedesmus sp. isolated from municipal wastewater for potential use in tertiary treatment, Bioresour. Technol., 2008, vol. 99, pp. 3787–3793.

    Article  CAS  PubMed  Google Scholar 

  61. Molina Grima, E., Belarbi, E.H., Acien Fernandez, F., Robles Medina, A., and Chisti, Y., Recovery of microalgae biomass and metabolites: process options and economics, Biotechnol. Adv., 2003, vol. 20, pp. 491–515.

    Article  CAS  PubMed  Google Scholar 

  62. Divakaran, R. and Sivasankara Pillai, V., Flocculation of algae using chitosan, J. Appl. Phycol., 2002, vol. 14, pp. 419–422.

    Article  CAS  Google Scholar 

  63. Olaizola, M., Microalgal removal of Co2 from flue gases: changes in medium ph and flue gas composition do not appear to affect the photochemical yield of microalgal cultures, Biotechnol. Bioproc. Engin., 2003, vol. 8, pp. 360–367.

    Article  CAS  Google Scholar 

  64. Solovchenko, A., Physiological role of neutral lipid accumulation in eukaryotic microalgae under stresses, Russ. J. Plant Physiol., 2012, vol. 59, pp. 167–176.

    Article  CAS  Google Scholar 

  65. Vooren, G.V., Le Grand, F., Legrand, J., Cuine, S., Peltier, G., and Pruvost, J., Investigation of fatty acids accumulation in 〈I〉 Nannochloropsis oculata 〈/I〉 for biodiesel application, Bioresour. Technol., 2012.

    Google Scholar 

  66. Solovchenko, A., Khozin-Goldberg, I., Recht, L., and Boussiba, S., Stress-induced changes in optical properties, pigment and fatty acid content of Nannochloropsis sp.; implications for non-destructive assay of total fatty acids, Mar. Biotehcnol., 2011, vol. 13, pp. 527–535.

    Article  CAS  Google Scholar 

  67. Wilkie, A.C. and Mulbry, W.W., Recovery of dairy manure nutrients by benthic freshwater algae, Bioresour. Technol., 2002, vol. 84, pp. 81–91.

    Article  CAS  PubMed  Google Scholar 

  68. Woertz, I., Feffer, A., Lundquist, T., and Nelson, Y., Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock, J. Environ. Eng., 2009, vol. 135, pp. 1115–1122.

    Article  CAS  Google Scholar 

  69. An, J.-Y., Sim, S.-J., Lee, J., and Kim, B., Hydrocarbon production form secondarily treated piggery waste-water by the green alga Botryococcus braunii, J. Appl. Phycol., 2003, vol. 15, pp. 185–191.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Solovchenko.

Additional information

Original Russian Text © A.E. Solovchenko, A.A. Lukyanov, S.G. Vasilieva, Ya.V. Savanina, O.V. Solovchenko, E.S. Lobakova, 2013, published in Vestnik Moskovskogo Universiteta. Biologiya, 2013, No. 4, pp. 38–49.

The article was translated by the authors.

About this article

Cite this article

Solovchenko, A.E., Lukyanov, A.A., Vasilieva, S.G. et al. Possibilities of bioconversion of agricultural waste with the use of microalgae. Moscow Univ. Biol.Sci. Bull. 68, 206–215 (2013). https://doi.org/10.3103/S0096392514010118

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392514010118

Keywords

Navigation