Skip to main content
Log in

Genetic Polymorphism of Microsatellite Loci and Their Association with Reproductive Traits in Ukrainian Meat Breed Pigs

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The primary goal of the study was to estimate the genetic diversity and population structure of the Ukrainian Meat breed pigs. Twelve microsatellite markers were selected from the list of the microsatellites recommended by FAO/ ISAG. The range of alleles per locus (Na) was found to be from 5 to 14 with an average of 8.42, and a total of 101 alleles were observed at these loci. The observed heterozygosity (Ho) was averaged 0.668 and expected heterozygosity (He) was 0.718, respectively. The LD-based population effective size (Ne) estimate for the Ukrainian Meat breed pigs was 68.3 (95% CI: 52–92) individuals. This population has not undergone any recent and/or sudden reduction in the effective population size and remained at mutation–drift equilibrium. The SW24, SW951, SW240, S0101, SW936, and S0228 loci genotypes were found to affect the total number of piglets born (TNB), the number of piglets born alive (NBA), and the number of piglets weaned (NW).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Stolpovskiy, Yu.A. and Zakharov-Gezekhus, I.A., The problem of conservation of gene pools of domesticated animals, Vavilov. Zh. Genet. Selekts., 2017, vol. 21, no. 4, pp. 477–486.

    Google Scholar 

  2. Sizareva, E.I., Gladyr’ E.A., Proskurina N.V., Shavyrina K.M. Some aspects of microsatellite usage in pig breeding, Dostizh. Nauki Tekh. APK, 2009, no. 8, pp. 38–41.

  3. Beuzen, N.D., Stear, M.J., and Chang, K.C., Molecular markers and their use in animal breeding, Vet. J., 2000, vol. 160, no. 1, pp. 42–52. doi 10.1053/tvjl.2000.0468

    Article  CAS  PubMed  Google Scholar 

  4. Nidup, K. and Moran, C., Genetic diversity of domestic pigs as revealed by microsatellites: a mini review, Genom. Quant. Genet., 2011, vol. 2, pp. 5–18.

    Google Scholar 

  5. Tautz, D., Hypervariability of simple sequences as a general source for polymorphic DNA markers, Nucleic Acids Res., 1989, vol. 17, no. 16, pp. 6463–6471. doi 10.1093/nar/17.16.6463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Marzanov, N.S., Ozerov, M.Yu., Nasibov, M.G., and Marzanova, L.K., Microsatellites and their application in investigation of genetic diversity of animals (review), S-kh. Biol., 2004, no. 2, pp. 104–111.

  7. Topiha, V.S., Kramarenko, S.S., and Lugovoy, S.I., Evaluation of linkage disequilibrium and “bottleneck” effect on microsatellite DNA loci in Ukraine breed populations of pigs, Svinarstvo, 2012, vol. 61, pp. 57–61.

    Google Scholar 

  8. Lugovoy, S.I., Kramarenko, S.S., and Lykhach, V.Ya., Analysis of the genetic-demographic processes in the Large White breed pig based on microsatellite DNA loci, Sci. Heritage, 2017, no. 10 (10), part 3, pp. 4–7.

  9. Mekkawy, W., Hafez, Y.M., Attia, M., Abdel-Salam, S.A.M., and Abou-Bakr, S., Association analysis between microsatellite DNA markers and milk yield and its components in Egyptian buffaloes using a random regression model, Egyptian J. Anim. Prod., 2012, vol. 49, no. 1, pp. 9–18.

    Google Scholar 

  10. Zabolewicz, T., Czarnik, U., Strychalski, J., Pareek, C.S., and Pierzchała, M., The association between microsatellite Bm6438 and milk performance traits in Polish Holstein-Friesian cattle, Nzech. J. Anim. Sci., 2011, vol. 56, no. 3, pp. 107–13. doi 10.17221/1299-CJAS

    Article  CAS  Google Scholar 

  11. Chatterjee, R., Sharma, R.P., Bhattacharya, T.K., Niranjan, M., and Reddy, B.L., Microsatellite variability and its relationship with growth, egg production, and immunocompetence traits in chickens, Biochem. Genet., 2010, vol. 48, nos. 1–2, pp. 71–82. doi 10.1007/ s10528-009-9296-5

    Article  CAS  PubMed  Google Scholar 

  12. Rudresh, B.H., Kotresh, A.M., Ashok, M., and Murthy, H.N.N., Association between microsatellite genotypes and body weight at different ages in indigenous chicken ecotypes, Vet. Sci. Res. J., 2016, vol. 7, no. 1, pp. 1–8. doi 10.15740/has/vsrj/7.1/1-8

    Article  Google Scholar 

  13. Geldermann, H., Mir, M.R., Kuss, A.W., and Bartenschlager, H., OLA-DRB1 microsatellite variants are associated with ovine growth and reproduction traits, Genet. Sel. Evol., 2006, vol. 38, no. 4, pp. 431–444. doi 10.1051/gse:2006013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Petroli, C.D., Paiva, S.R., Prado, PaimT., and McManus, C.M., Association of microsatellite markers with production traits in Santa Ines and crossbred sheep, Arch. Vet. Sci., 2014, vol. 19, no. 1, pp. 7–16. doi 10.5380/avs.v19i1.31873

    Article  Google Scholar 

  15. Wang, J.G., Hou, J.-X., Li, G., Zhu, G.Q., and Cao, B., Polymorphism of four microsatellites and their polymerisation effect on litter size in Boer goats, Electron. J. Biotechnol., 2013, vol. 16, no. 4, pp. 1–10. doi 10.2225/vol16-issue4-fulltext-13

    Google Scholar 

  16. Amos, W. and Acevedo-Whitehouse, K.W., A new test for genotype-fitness associations reveals a single microsatellite allele that strongly predicts the nature of tuberculosis infections in wild boar, Mol. Ecol. Resour., 2009, vol. 9, no. 4, pp. 1102–1111. doi.org/ doi 10.1111/j.1755-0998.2009.02560.x

    Article  CAS  PubMed  Google Scholar 

  17. Siliy, L., Rodríguez, M.C., Fernández, A., Barragán, C., Benítez, R., Óvilo, C., and Fernández, A.I., Measuring inbreeding and inbreeding depression on pig growth from pedigree or SNP-derived metrics, J. Anim. Breed. Genet., 2013, vol. 130, no. 5, pp. 349–360. doi 10.1111/jbg.12031

    Google Scholar 

  18. Zinovieva, N.A., Harzinova, V.R., and Logvinova, T.I., Gladyr’ E.A., Sizareva E.I., Chinarov Yu.I. Microsatellite profiles as criteria for confirmation of breed purity and for evaluation of heterogeneity degree of parents’ pairs in pig breeding, S-kh. Biol., 2011, no. 6, pp. 47–53.

  19. Peakall, R. and Smouse, P.E., GENAIEX 6: genetic analysis in Excel. Population genetic software for teaching and research, Mol. Ecol. Res., 2006, vol. 6, no. 1, pp. 288–295. doi.org/. 2005.01155.x doi 10.1111/j.1471-8286

  20. Rousset, F., Genepop’007: a complete re-implementation of the Genepop software for Windows and Linux, Mol. Ecol. Res., 2008, vol. 8, no. 1, pp. 103–106. doi.org/ doi 10.1111/j.1471-8286.2007.01931.x

    Article  Google Scholar 

  21. Yeh, F.C. and Boyle, T.J.B., Population genetic analysis of codominant and dominant markers and quantitative traits, Belg. J. Bot., 1997, vol. 129, pp. 157–163.

    Google Scholar 

  22. Luikart, G. and Cornuet, J.M., Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data, Conserv. Biol., 1998, vol. 12, no. 1, pp. 228–237. doi 10.1111/j.1523-1739.1998.96388.x

    Article  Google Scholar 

  23. Cornuet, J.M. and Luikart, G., Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data, Genetics, 1996, vol. 144, no. 4, pp. 2001–2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Do, C., Waples, R.S., Peel, D., Macbeth, G.M., Tillett, B.J., and Ovenden, J.R., NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data, Mol. Ecol. Resour., 2014, vol. 14, no. 1, pp. 209–214. doi 10.1111/1755-0998.12157

    Article  CAS  PubMed  Google Scholar 

  25. Lugovoy, S.I., Characterization of Ukraine’s local pig breeds genofund for the loci of DNA microsatellites, Vestn. NGAU, 2013, no. 2 (27), pp. 67–72.

  26. Lugovoy, S., Kramarenko, S., and Galimov, S., Genetic polymorphism of the red white belted breed pigs based on microsatellite markers, Visn. Ahr. Nauky Prychornomor., 2017, no. 1 (93), pp. 113–119.

  27. Lugovoy, S.I., Kramarenko, S.S., and Lykhach, V.Ya., Genetic polymorphism of the Landrace pig based on microsatellite markers, Nauk. Visn. LNUVMBT im. S.Z. Gzhytskoho, 2017, vol. 19, no. 74, pp. 63–66. doi.org/ doi 10.15421/nvlvet7414

    Google Scholar 

  28. Kharzinova, V.R., Zinovieva, N.A., Bateneva, N.V., Lugovoj, S.N., Gladyr, E.A., Goncharenko, G.M., Zhuchaev, K.V., Maurcheva, V.N., and Barsukova, M.A., The characterization of allele pool of Siberian population of fast-growing meet breed using microsatellites, Dostizh. Nauki Tekhn. APK, 2011, no. 10, pp. 59–61.

  29. Sollero, B.P., Paiva, S.R., Faria, D.A., Guimaraes, S.E.F., Castro, S.T.R., Egito, A.A., Albuquerque, M.S.M., Piovezan, U., Bertani, G.R., and Mariante, A.D.S., Genetic diversity of Brazilian pig breeds evidenced by microsatellite markers, Livest. Sci., 2009, vol. 123, no. 1, pp. 8–15. doi 10.1016/j.livsci.2008.09.025

    Article  Google Scholar 

  30. Yang, S.L., Wang, Z.G., Liu, B., Zhang, G.X., Zhao, S.H., Yu, M., Fan, B., Li, M., Xiong, T., and Li, K., Genetic variation and relationships of eighteen Chinese indigenous pig breeds, Genet. Sel. Evol., 2003, vol. 35, no. 7, pp. 657–671. doi 10.1051/gse:2003045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ayizanga, R.A., Kayang, B.B., Adomako, K., Adenyo, C., Inoue-Murayama, M., and Asamoah, L., Genetic diversity of some Ghanaian pigs based on microsatellite markers, Livestock Res. Rural Dev., 2016, vol. 28, no. 2.

  32. Zaman, G., Shekar, M.C., and Aziz, A., Molecular characterization of Meghalaya local pigs (Niang Megha) using microsatellite markers, Indian J. Sci. Technol., 2013, vol. 6, no. 10, pp. 5302–5306.

    Google Scholar 

  33. Zaman, G., Shekar, M.C., Ferdoci, A.M., and Laskar, S., Molecular characterization of Ghungroo pig, Int. J. Anim. Biotechnol., 2013, vol. 3, no. 1, pp. 1–4.

    Google Scholar 

  34. Zaman, G., Laskar, S., Ferdoci, A.M., Shekar, M.C., and Chetri, A.J., Molecular characterization of Doom pigs using microsatellite markers, Afr. J. Biotechnol., 2014, vol. 13, no. 30, pp. 3017–3022. doi. org/ doi 10.5897/AJB2014.13729

    Article  CAS  Google Scholar 

  35. Zaman, G., Chandra, ShekarM., Kharghoria, G., and Ahmed, F.A., Molecular characterization of Mizoram local pigs (Zovawk) using microsatellite markers, BioTechnol.: Indian J., 2014, vol. 10, no. 1, pp. 24–28.

    CAS  Google Scholar 

  36. Zaman, G., Shekar, M.C., Nath, M.K., Kiba, H.Z., and Savino, N., Molecular characterization of Votho pigs from Nagaland using microsatellite markers, Indian J. Anim. Sci., 2014, vol. 84, no. 10, pp. 1137–1139.

    Google Scholar 

  37. Kharzinova, V.R., Zhuchaev, K.V., Kostyunina, O.V., Kochneva, M.L., Chydym, S.M., and Zinovieva, N.A., Molecular-genetic identification and certification of the Kemerovo breed of pigs based on STR-analysis, Dostizh. Nauki Tekh. APK, 2017, vol. 31, no. 6, pp. 62–64.

    Google Scholar 

  38. Kharzinova, V.R., Kostyunina, O.V., and Zinovieva, N.A., Comparative characterization of the allele pool of local pig breeds based on microsatellite analysis, Svinovodstvo, 2017, vol. 1, pp. 25–27.

    Google Scholar 

  39. Lugovoy, S.I., Kramarenko, S.S., and Lykhach, V.Ya., Intra-breed variation in the Large White pig breed based on the microsatellite DNA polymorphism, Stiinta Agricola, 2017, no. 1, pp. 94–98.

  40. Arun, KumarDeA., Jeyakumar, S., Kundu, A., Kundu, M.S., Sunder, J., and Ramachandran, M., Genetic characterization of Andaman Desi pig, an indigenous pig germplasm of Andaman and Nicobar group of islands, India by microsatellite markers. Vet. World, 2013, vol. 6, no. 10, pp. 750–753. doi 10.14202/vetworld.2013.750-753

  41. Swart, H., Kotze, A., Olivier, P.A.S., and Grobler, J.P., Microsatellite-based characterization of Southern African domestic pigs (Sus scrofa domestica), S. Af. J. Anim. Sci., 2010, vol. 40, no. 2, pp. 121–132.

    CAS  Google Scholar 

  42. Zaman, G., Shekar, M.C., Laskar, S., Ferdoci, A.M., and Rank, D.N., Molecular characterization of Assam Local pig, Indian J. Biotechnol., 2015, vol. 14, no. 3, pp. 416–419.

    CAS  Google Scholar 

  43. Carneiro, H., Paiva, S.R., Ledur, M., Figueiredo, E.A.P., Grings, V.H., Silva, F.C.P., and McManus, C., Pedigree and population viability analyses of a conservation herd of Moura pig, Anim. Genet. Resour., 2014, vol. 54, pp. 127–134. doi 10.1017/s2078633613000362

    Article  Google Scholar 

  44. Crovetti, A., Sirtori, F., Pugliese, C., Franci, O., and Bozzi, R., Pedigree analysis of Cinta Senese and Mora Romagnola breeds, Acta Agric. Slov., 2013, vol. 4, pp. 41–44.

    Google Scholar 

  45. Herrero-Medrano, J.M., Megens, H.J., Groenen, M.A., Ramis, G., Bosse, M., Perez-Enciso, M., and Crooijmans, R.P., Conservation genomic analysis of domestic and wild pig populations from the Iberian Peninsula, BMC Genet., 2013, vol. 14, no. 106, pp. 1–13. doi 10.1186/1471-2156-14-106

    Article  Google Scholar 

  46. Meuwissen, T.H.E. and Woolliams, J.A., Effective sizes of livestock populations to prevent a decline in fitness, Theor. Appl. Genet., 1994, vol. 89, nos. 7–8, pp. 1019–1026. doi 10.1007/BF00224533

    CAS  PubMed  Google Scholar 

  47. Cowled, B.D., Aldenhoven, J., Odeh, I.O., Garrett, T., Moran, C., and Lapidge, S.J., Feral pig population structuring in the rangelands of eastern Australia: applications for designing adaptive management units, Conserv. Genet., 2008, vol. 9, no. 1, pp. 211–224. doi 10.1007/s10592-007-9331-1

    Article  Google Scholar 

  48. Li, F.E., Mei, S.Q., Deng, C.Y., Jiang, S.W., Zuo, B., Zheng, R., Li, J.L., Xu, D.Q., Lei, M.G., and Xiong, Y.Z., Association of a microsatellite flanking FSHB gene with reproductive traits and reproductive tract components in pigs, Czech J. Anim. Sci., 2008, vol. 53, no. 4, pp. 139–144. doi 10.17221/371-CJAS

    Article  CAS  Google Scholar 

  49. Korwin-Kossakowska, A., Sender, G., and Kuryl, J., Associations between the microsatellite DNA sequence in the IGF1 gene, polymorphism in the ESR gene and selected reproduction traits in F1 (Zlotnicka Spotted x Polish Large White) sows, Anim. Sci. Pap. Rep., 2004, vol. 22, no. 2, pp. 215–226.

    CAS  Google Scholar 

  50. Chmurzynska, A., Mackowski, M., Szydlowski, M., Melonek, J., Kamyczek, M., Eckert, R., Ryzycki, M., and Switonski, M., Polymorphism of intronic microsatellites in the A-FABP and LEPR genes and its association with productive traits in the pig, J. Anim. Feed Sci., 2004, vol. 13, no. 61, pp. 615–624. doi.org/ doi 10.22358/jafs/67629/2004

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out within the framework of the state budget research area “Scientific Substantiation and Development of New Methods for Determining Pedigree Value and Early Prediction of the Productivity of Farm Animals” (2017–2019, state registration number 0117U000485) of the Ministry of Education and Science of Ukraine as well as with the financial support of the Russian Foundation for Basic Research Mobility of Young Scientists (for S.I. Lugovoy, 2010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. I. Lugovoy, V. R. Kharzinova, S. S. Kramarenko, A. V. Lykhach, A. S. Kramarenko or V. Ya. Lykhach.

Additional information

Translated by K. Lazarev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lugovoy, S.I., Kharzinova, V.R., Kramarenko, S.S. et al. Genetic Polymorphism of Microsatellite Loci and Their Association with Reproductive Traits in Ukrainian Meat Breed Pigs. Cytol. Genet. 52, 360–367 (2018). https://doi.org/10.3103/S0095452718050079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452718050079

Keywords:

Navigation