Skip to main content
Log in

Establishment of transgenic lettuce plants producing potentially antihypertensive ShRNA

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Development of RNAi-based therapeutics is a fast growing field of the pharmaceutical industry. Using plants for production of pharmaceutically valuable siRNAs may have significant advantages of costeffectiveness, scalability, and low risk of contamination with human pathogens. If edible plant species are genetically engineered to synthesize siRNAs, the costly stage of target product purification may be omitted. We describe the establishment of transgenic lettuce plants producing shRNA targeting delta isoform of protein kinase C (PKC-delta), an effective target for RNAi-based treatment of arterial hypertension. Transgenic lettuce plants were obtained by Agrobacterium-mediated transformation with genetic constructs harboring antiPKC and scrambled (control) shRNA genes. The presence of transgenes was proven by PCR analysis, and the accumulation of antiPKC shRNA was estimated using the RT-qPCR technique. Six transgenic lettuce lines showed varying levels of antiPKC shRNA expression with the highest value reaching 14 ± 9% of highly abundant endogenous lettuce micro RNA (miR156a), or 12.7 fmol/g dry weight. Plants carrying either antiPKC or scrambled shRNA genes flowered normally but did not produce seeds. The described transgenic lettuce plants accumulating antiPKC siRNA are the subject for animal testing and can be considered as raw material for the development of novel antihypertensive drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sibley, C.R., Seow, Y., and Wood, M.J., Novel RNAbased strategies for therapeutic gene silencing, Mol. Ther., 2010, vol. 18, no. 3, pp. 466–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gavrilov, K. and Saltzman, W.M., Therapeutic siRNA: principles, challenges, and strategies, Yale J. Biol. Med., 2012, vol. 85, no. 2, pp. 187–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Behlke, M.A., Chemical modification of siRNAs for in vivo use, Oligonucleotides, 2008, vol. 18, no. 4, pp. 305–319.

    Article  CAS  PubMed  Google Scholar 

  4. Yu, B., Yang, Z., Li, J., Minakhina, S., Yang, M., Padgett, R.W., Steward, R., and Chen, X., Methylation as a crucial step in plant microRNA biogenesis, Science, 2005, vol. 307, no. 5711, pp. 932–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lilley, C.J., Bakhetia, M., Charlton, W.L., and Urwin, P.E., Recent progress in the development of rna interference for plant parasitic nematodes, Mol. Plant Pathol., 2007, vol. 8, no. 5, pp. 701–711.

    Article  CAS  PubMed  Google Scholar 

  6. Baum, J.A., Bogaert, T., Clinton, W., Heck, G.R., Feldmann, P., Ilagan, O., Johnson, S., Plaetinck, G., Munyikwa, T., Pleau, M., Vaughn, T., and Roberts, J., Control of coleopteran insect pests through RNA interference, Nat. Biotechnol., 2007, vol. 25, no. 11, pp. 1322–1326.

    Article  CAS  PubMed  Google Scholar 

  7. Mao, Y.B., Cai, W.J., Wang, J.W., Hong, G.J., Tao, X.Y., Wang, L.J., Huang, Y.P., and Chen, X.Y., Silencing a cotton bollworm P450 monooxygenase gene by plantmediated RNAi impairs larval tolerance of gossypol, Nat. Biotechnol, 2007, vol. 25, no. 11, pp. 1307–1313.

    Article  CAS  PubMed  Google Scholar 

  8. Jin, S., Singh, N.D., Li, L., Zhang, X., and Daniell, H., Engineered chloroplast dsrna silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa armigera larval development and chitin synthase genes in the insect gut and disrupts Helicoverpa armigera larval development and pupation, Plant Biotechnol. J., 2015, vol. 13, no. 3, pp. 435–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, L., Hou, D., Chen, X., Li, D., Zhu, L., Zhang, Y., Li, J., Bian, Z., Liang, X., Cai, X., Yin, Y., Wang, C., Zhang, T., Zhu, D., Zhang, D., Xu, J., Chen, Q., Ba, Y., Liu, J., Wang, Q., Chen, J., Wang, J., Wang, M., Zhang, Q., Zhang, J., Zen, K., and Zhang, C.Y., Exogenous plant mir168a specifically targets mammalian ldlrap1: evidence of cross-kingdom regulation by microRNA, Cell Res., 2012, vol. 22, no. 1, pp. 107–126.

    Article  CAS  PubMed  Google Scholar 

  10. Liang, H., Zhang, S., Fu, Z., Wang, Y., Wang, N., Liu, Y., Zhao, C., Wu, J., Hu, Y., Zhang, J., Chen, X., Zen, K., and Zhang, C.Y., Effective detection and quantification of dietetically absorbed plant microRNAs in human plasma, J. Nutr. Biochem., 2015, vol. 26, no. 5, pp. 505–512.

    Article  CAS  PubMed  Google Scholar 

  11. Lukasik, A. and Zielenkiewicz, P., In silico identification of plant mirnas in mammalian breast milk exosomes— a small step forward?, PLoS One, 2014, vol. 9, no. 6, p. e99963.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li, J., Zhang, Y., Li, D., Liu, Y., Chu, D., Jiang, X., Hou, D., Zen, K., and Zhang, C.Y., Small non-coding RNAs transfer through mammalian placenta and directly regulate fetal gene expression, Protein Cell, 2015, vol. 6, no. 6, pp. 391–396.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dickinson, B., Zhang, Y., Petrick, J.S., Heck, G., Ivashuta, S., and Marshall, W.S., Lack of detectable oral bioavailability of plant microRNAs after feeding in mice, Nat. Biotechnol., 2013, vol. 31, no. 11, pp. 965–967.

    Article  CAS  PubMed  Google Scholar 

  14. Bagci, C. and Allmer, J., One step forward, two steps back; xeno-microRNAs reported in breast milk are artifacts, PLoS One, 2016, vol. 11, no. 1, p. e0145065.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen, X., Zen, K., and Zhang, C.Y., Reply to lack of detectable oral bioavailability of plant microRNAs after feeding in mice, Nat. Biotechnol, 2013, vol. 31, no. 11, pp. 967–969.

    Article  CAS  PubMed  Google Scholar 

  16. Zhou, Z., Li, X., Liu, J., Dong, L., Chen, Q., Kong, H., Zhang, Q., Qi, X., Hou, D., Zhang, L., Zhang, G., Liu, Y., Zhang, Y., Li, J., Wang, J., Chen, X., Wang, H., Zhang, J., Chen, H., Zen, K., and Zhang, C.Y., Honeysuckle-encoded atypical microRNA 2911 directly targets influenza a viruses, Cell Res., 2015, vol. 25, no. 1, pp. 39–49.

    Article  CAS  PubMed  Google Scholar 

  17. Mlotshwa, S., Pruss, G.J., Macarthur, J.L., Endres, M.W., Davis, C., Hofseth, L.J., Pena, M.M., and Vance, V., A novel chemopreventive strategy based on therapeutic microRNAs produced in plants, Cell Res., 2015, vol. 25, no. 4, pp. 521–524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Petrick, J.S., Moore, W.M., Heydens, W.F., Koch, M.S., Sherman, J.H., and Lemke, S.L., A 28-day oral toxicity evaluation of small interfering RNAs and a long double-stranded RNA targeting vacular ATPase in mice, Regul. Toxicol. Pharmacol., 2014, vol. 71, no. 1, pp. 8–23.

    Article  PubMed  Google Scholar 

  19. Liu, N. and Olson, E.N., microRNA regulatory networks in cardiovascular development, Dev. Cell, 2010, vol. 18, no. 4, pp. 510–525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Silvestri, P., Di Russo, C., Rigattieri, S., Fedele, S., Todaro, D., Ferraiuolo, G., Altamura, G., and Loschiavo, P., Micrornas and ischemic heart disease: towards a better comprehension of pathogenesis, new diagnostic tools and new therapeutic targets, Recent Pat. Cardiovasc. Drug. Discov., 2009, vol. 4, no. 2, pp. 109–118.

    Article  CAS  PubMed  Google Scholar 

  21. Novokhatska, T., Tishkin, S., Dosenko, V., Boldyriev, A., Ivanova, I., Strielkov, I., and Soloviev, A., Correction of vascular hypercontractility in spontaneously hypertensive rats using shrnas-induced delta protein kinase c gene silencing, Eur. J. Pharmacol., 2013, vol. 718, nos. 1–3, p. 401–407.

    Article  CAS  PubMed  Google Scholar 

  22. Marillonnet, S., Thoeringer, C., Kandzia, R., Lkimyuk, V., and Gleba, Y., Systemic agrobacterium tumefaciens-mediated transfection of viral replicon for efficient transient expression in plants, Nat. Biotechnol., 2005, vol. 23, no. 6, pp. 718–723.

    Article  CAS  PubMed  Google Scholar 

  23. Matveeva, N.A., Vasylenko, M., Shakhovsky, A.M., and Kuchuk, N.V., Agrobacterium-mediated transformation of lettuce (Lactuca sativa L.) with genes coding bacterial antigens from mycobacterium tuberculosis, Cytol. Genet., 2009, vol. 43, no. 2, pp. 94–98.

    Article  Google Scholar 

  24. Querci, M., Jermini, M., and Van der Eede, G., The analysis of food samples for the presence of genetically modified organisms. Luxembourg: Office for Official Publications of the European Communities, 2006.

    Google Scholar 

  25. Berdichevets, I.N., Shimshilashvili, H.R., Gerasymenko, I.M., Sindarovska, Y.R., Sheludko, Y.V., and Goldenkova-Pavlova, I.V., Miltiplex pcr assay for detection of recombinant genes encoding fatty acid desaturases fused with lichenase reporter protein in GM plants, Anal. Bioanal. Chem., 2010, vol. 397, no. 6, pp. 2289–2293.

    Article  CAS  PubMed  Google Scholar 

  26. Kurihara, Y., Takashi, Y., and Watanabe, Y., The interaction between dcl1 and hyl1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis, RNA, 2006, vol. 12, no. 2, pp. 206–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arif, M.A., Frank, W., and Khraiwesh, B., Role of RNA interference (RNAi) in the moss Physcomitrella patens, Int. J. Mol. Sci., 2013, vol. 14, no. 1, pp. 1516–1540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kramer, M.F., Stem-loop RT-qRCR for miRNAs, Curr. Protoc. Mol. Biol., 2011, vol. 15, unit 15–10.

  29. Hong, Y. and Jackson, S., Floral induction and flower formation—the role and potential applications of mRNAs, Plant Biotechnol. J., 2015, vol. 13, no. 3, pp. 282–292.

    Article  CAS  PubMed  Google Scholar 

  30. Wang, C.Y., Zhang, S., Yu, Y., Luo, Y.C., Liu, Q., Ju, C., Zhang, Y.C., Qu, L.H., Lucas, W.J., Wang, X., and Chen, Y.Q., Mir397b regulated both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis, Plant Biotechnol. J., 2014, vol. 12, no. 8, pp. 1132–1142.

    Article  CAS  PubMed  Google Scholar 

  31. Barik, S., RNAi in moderation, Nat. Biotechnol., 2006, vol. 24, no. 7, pp. 796–797.

    Article  CAS  PubMed  Google Scholar 

  32. Tiwari, M., Sharma, D., and Trivedi, P.K., Artificial microRNA mediated gene silencing in plants: progress and perspectives, Plant. Mol. Biol., 2014, vol. 86, nos. 1–2, p. 1–18.

    Article  CAS  PubMed  Google Scholar 

  33. McBride, J.L., Boudreau, R.L., Harper, S.Q., Staber, P.D., Monteys, A.M., Martins, I., Gilmore, B.L., Burstein, H., Peluso, R.W., Polisky, B., Carter, B.J., and Davidson, B.L., Artificial miRNAs mitigate shRNAmediated toxicity in the brain: implications for the therapeutic development of RNAi, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, no. 15, pp. 5868–5873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Gerasymenko.

Additional information

Original Russian Text © I.M. Gerasymenko, V.V. Kleschevnikov, V.R. Kedlian, L.O. Sakhno, I.A. Arbuzova, Y.V. Sheludko, V.E. Dosenko, N.V. Kuchuk, 2017, published in Tsitologiya i Genetika, 2017, Vol. 51, No. 1, pp. 3–11.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerasymenko, I.M., Kleschevnikov, V.V., Kedlian, V.R. et al. Establishment of transgenic lettuce plants producing potentially antihypertensive ShRNA. Cytol. Genet. 51, 1–7 (2017). https://doi.org/10.3103/S0095452717010054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452717010054

Keywords

Navigation