Skip to main content
Log in

Plant vacuoles: Physiological roles and mechanisms of vacuolar sorting and vesicular trafficking

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The main types of plant cell vacuoles and their characteristics were described. Their structure, functions, and role in maintainig of cellular homeostasis were outlined. The vesicular transport models and their different vacuolar destinations were presened and particular features of vesicular transport and destination were described for different types of vacuoles. The further promissing directions of vacuolar research were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vasil’ev, A.E., Voronin, N.S., Elenevskii, A.G., et al., Botanika: Morfologiya i anatomiya rastenii (Botany: Plant Morphology and Anatomy), Moscow: Prosveshchenie, 1988.

    Google Scholar 

  2. Marty, F., Plant vacuoles, Plant Cell, 1999, vol. 11, pp. 587–600.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Neuhaus, J.M. and Martinoia, E., Plant Vacuoles, eLS-2011. doi: 10.1002/9780470015902.a0001675.pub2

    Google Scholar 

  4. Muntz, K. and Shutov, A.D., Legumins and their functions in plants, Trends Plant Sci., 2002, vol. 7, pp. 340–344.

    Article  PubMed  CAS  Google Scholar 

  5. Jauh, G.Y., Fischer, A.M., Grimes, H.D., et al., Deltatonoplast intrinsic protein defines unique plant vacuole functions, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, pp. 12995–12999.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Paris, N., Stanley, C.M., Jones, R.L., and Rogers, J.C., Plant cells contain two functionally distinct vacuolar compartments, Cell, 1996, vol. 85, pp. 563–572.

    Article  PubMed  CAS  Google Scholar 

  7. Hoh, B., Hinz, G., Jeong, B.K., and Robinson, D.G., Protein storage vacuoles form de novo during pea cotyledon development, J. Cell Sci., 1995, vol. 108, pp. 299–310.

    PubMed  CAS  Google Scholar 

  8. Jauh, G.Y., Phillips, T.E., and Rogers, J.C., Tonoplast intrinsic protein isoforms as markers for vacuolar functions, Plant Cell, 1999, vol. 11, pp. 1867–1882.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Swanson, S.J., Bethke, P.C., and Jones, R.L., Barley aleurone cells contain two types of vacuoles: characterization of lytic organelles using fluorescent probes, Plant Cell, 1998, vol. 10, pp. 685–698.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Hinz, G., Hillmer, S., Baumer, M., and Hohl, I., Vacuolar storage proteins and the putative vacuolar sorting receptor BP-80 exit the Golgi apparatus of developing pea cotyledons in different transport vesicles, Plant Cell, 1999, vol. 11, pp. 1509–1524.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Jiang, L., Phillips, T.E., Rogers, S.W., and Rogers, J.C., Biogenesis of the protein storage vacuole crystalloid, J. Cell Biol., 2000, vol. 150, pp. 755–770.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Isayenkov, S., Isner, J.C., and Maathuis, F.J.M., Rice two-pore K+ channels are expressed in different types of vacuoles, Plant Cell, 2011, vol. 23, pp. 756–768.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Isatenkov, S., Isner, J.C., and Maathuis, F.J.M., Membrane localization diversity of TPK channels and their physiological role, Plant Signal. Behav., 2011, vol. 6, pp. 1201–1204.

    Article  CAS  Google Scholar 

  14. Vitale, A. and Hinz, G., Sorting of proteins to storage vacuoles: how many mechanisms? Trends Plant Sci., 2005, vol. 10, pp. 316–323.

    Article  PubMed  CAS  Google Scholar 

  15. Okita, T.W. and Rogers, J.C., Compartmentation of proteins in the endomembrane system of plant cells, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1996, vol. 47, pp. 327–350.

    Article  PubMed  CAS  Google Scholar 

  16. Frigerio, L., Hinz, G., and Robinson, D.G., Multiple vacuoles in plant cells: rule or exception? Traffic, 2008, vol. 9, pp. 1564–1570.

    Article  PubMed  CAS  Google Scholar 

  17. Johnson, K.D., Herman, E.M., and Chrispeels, M.J., An abundant, highly conserved tonoplast protein in seeds, Plant Physiol., 1989, vol. 91, pp. 1006–1013.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Isayenkov, S., Isner, J.C., and Maathuis, F.J.M., Vacuolar ion channels: roles in plant nutrition and signaling, FEBS Lett., 2010, vol. 584, pp. 1982–1988.

    Article  PubMed  CAS  Google Scholar 

  19. Maathuis, F.J.M., Physiological functions of mineral macronutrients, Curr. Opin. Plant Biol., 2009, vol. 12, pp. 250–258.

    Article  PubMed  CAS  Google Scholar 

  20. Maathuis, F.J.M. and Sanders, D., Energization of potassium uptake in Arabidopsis thaliana, Planta, 1993, vol. 191, pp. 302–307.

    Article  CAS  Google Scholar 

  21. Walker, D.J., Leigh, R.A., and Miller, A.J., Potassium homeostasis in vacuolated plant cells, Proc. Natl. Acad. Sci. U.S.A., 1996, vol. 93, pp. 10510–10514.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Marschner, H., Mineral nutrition in higher plants, London: Acad. press, 1995.

    Google Scholar 

  23. Echeverria, E. and Jacqueline, J.K., Vacuolar acid hydrolysis as a physiological mechanism for sucrose breakdown, Plant Physiol., 1989, vol. 90, pp. 530–533.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Matile, P., Biochemistry and function of vacuoles, Annu. Rev. Plant. Physiol., 1978, vol. 29, pp. 193–213.

    Article  CAS  Google Scholar 

  25. Boller, T. and Wiemken, A., Dynamics of vacuolar compartmentation, Annu. Rev. Plant. Physiol., 1986, vol. 37, pp. 137–164.

    Article  CAS  Google Scholar 

  26. Martinoia, E., Massonneau, A., and Frangne, N., Transport processes of solutes across the vacuolar membrane of higher plants, Plant Cell Physiol., 2000, vol. 41, pp. 1175–1186.

    Article  PubMed  CAS  Google Scholar 

  27. Hedrich, R., Barbier-Brygoo, H., Felle, H.H., et al., General mechanisms for solute transport across the tonoplast of plant vacuoles: a patch clamp survey of ion channels and proton pumps, Bot. Acta, 1988, vol. 101, pp. 7–13.

    Article  CAS  Google Scholar 

  28. Höffe, H., Hubbard, L., Reizer, J., et al., Vegetative and seed-specific forms of tonoplast intrinsic protein in the vacuolar membrane of Arabidopsis thaliana, Plant Physiol., 1992, vol. 99, pp. 561–570.

    Article  Google Scholar 

  29. Marty-Mazars, D., Clemencet, M.C., Dozolme, P., and Marty, F., Antibodies to the tonoplast from the storage parenchyma cells of beetroot recognize a major intrinsic protein related to tips, Eur. J. Cell Biol., 1995, vol. 66, pp. 106–118.

    PubMed  CAS  Google Scholar 

  30. Barrieu, F., Thomas, D., Marty-Mazars, D., Charbonnier, M., and Marty, F., Tonoplast intrinsic proteins from cauliflower (Brassica oleracea L. var. botrytis): immunological analysis, cDNA cloning and evidence for expression in meristematic tissues, Planta, 1998, vol. 204, pp. 335–344.

    CAS  Google Scholar 

  31. Jiang, J., Phillips, T., Hamm, C., et al., The protein storage vacuole: a unique compound organelle, J. Cell Biol., 2001, vol. 155, pp. 991–1002.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Otegui, M.S. and Noh, Y.-S., Mart’nez, D.E., et al., Senescence-associated vacuoles with intense proteolytic activity develop in leaves of arabidopsis and soybean, Plant J., 2005, vol. 41, pp. 831–844.

    Article  PubMed  CAS  Google Scholar 

  33. Costa, M.L. Gomez, F.M., et al., Senescence-associated vacuoles are involved in the degradation of chloroplast proteins in tobacco leaves, Plant J., 2008, vol. 56, pp. 196–206.

    Article  PubMed  CAS  Google Scholar 

  34. Swidzinski, J.A., Sweetlove, L.J., and Leaver, C.J., A custom microarray analysis of gene expression during programmed cell death in Arabidopsis thaliana, Plant J., 2002, vol. 30, pp. 431–446.

    Article  PubMed  CAS  Google Scholar 

  35. Hara-Hishimura, I. and Hatsugai, N., The role of vacuole in plant cell death, Cell Death Differ., 2011, vol. 18, pp. 1298–1304.

    Article  CAS  Google Scholar 

  36. Muntz, K., Deposition of storage proteins, Plant. Mol. Biol., 1998, vol. 38, pp. 77–99.

    Article  PubMed  CAS  Google Scholar 

  37. Herman, E.M. and Larkins, B.A., Protein storage bodies and vacuoles, Plant Cell, 1999, vol. 11, pp. 601–613.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Lott, J.N.A., Protein Bodies: the Biochemistry of Plants, Vol. 1, Tolbert, N.E., Ed., New York: Academic, 1980, pp. 589–623.

  39. Weber, E. and Neumann, D., Protein bodies, storage organelles in plant seeds, Biochem. Physiol. Pflanz., 1980, vol. 175, pp. 279–306.

    Article  CAS  Google Scholar 

  40. Craig, S., Goodchild, D.J., and Miller, C., Structural aspects of protein accumulation in developing pea cotyledons. 2. Three-vacuole in plant cells, Plant Physiol., 1980, vol. 101, pp. 1–6.

    Google Scholar 

  41. Bethke, P.C., Hillmer, S., and Jones, R.L., Isolation of intact protein storage vacuoles from barley aleurone: identification aspartic and cysteine proteases, Plant Physiol., 1996, vol. 110, pp. 521–529.

    PubMed Central  PubMed  CAS  Google Scholar 

  42. Runeberg-Roos, P., Tormakangas, K., and Ostman, A., Primary structure of a barley-grain aspartic proteinase; a plant aspartic proteinase resembling mammalian cathepsin D, Eur. J. Biochem., 1991, vol. 202, pp. 1021–1027.

    Article  PubMed  CAS  Google Scholar 

  43. Runeberg-Roos, P., Kervinen, J., Kovaleva, V., et al., The aspartic proteinase of barley is a vacuolar enzyme that processes probarley lectin in vitro, Plant Physiol., 1994, vol. 105, pp. 321–329.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Di Sansebastiano, G.P., Paris, N., Marc-Matin, S., and Neuhaus, J.M., Specific accumulation of GFP in a non-acidic vacuolar compartment via a C-terminal propeptide-mediated sorting pathway, Plant J., 1998, vol. 15, pp. 449–457.

    Article  PubMed  Google Scholar 

  45. Di Sansebastiano, G.P., Paris, N., Marc-Martin, S., and Neuhaus, J.M., Regeneration of a lytic central vacuole and of neutral peripheral vacuoles can be visualized by green fluorescent proteins targeted to either type of vacuole, Plant Physiol., 2001, vol. 126, pp. 87–86.

    Article  Google Scholar 

  46. Spitzer, E. and Lott, J.N.A., Thin-section, freeze-fracture, and energy dispersive X-ray analysis studies of the protein bodies of tomato seeds, Can. J. Bot., 1980, vol. 58, pp. 699–711.

    Article  CAS  Google Scholar 

  47. Greenwood, J.S. and Chrispeels, M.J., Correct targeting of the bean storage protein phaseolin in the seeds of transformed tobacco, Plant Physiol., 1985, vol. 79, pp. 65–71.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Hoffman, L.M., Donaldson, D.D., Bookland, R., et al., Synthesis and protein deposition of maize 15-Dd zein in transgenic tobacco seeds, EMBO J., 1987, vol. 6, pp. 3213–3221.

    PubMed Central  PubMed  CAS  Google Scholar 

  49. Sturn, A. and Chrispeels, M.J., Correct glycosylation, golgi-processing, and targeting to protein bodies of the vacuolar protein phytohemagglutinin in transgenic tobacco, Planta, 1988, vol. 175, pp. 170–183.

    Google Scholar 

  50. Oufattole, M., Park, J.H., Poxleitner, M., et al., Selective membrane protein internalization accompanies movement from the endoplasmic reticulum to the protein storage vacuole pathway in Arabidopsis, Plant Cell, 2005, vol. 17, pp. 3066–3086.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Bolte, S., Lanquar, V., Soler, M.N., et al., Distinct lytic vacuolar compartments are embedded inside the protein storage vacuole of dry and germinating Arabidopsis thaliana seeds, Plant Cell Physiol., 2011, vol. 52, pp. 1142–1152.

    Article  PubMed  CAS  Google Scholar 

  52. Rogers, J.C., Internal membrane in maize aleurone protein storage vacuoles: beyond autophagy, Plant Cell, 2011, vol. 23, pp. 4168–4171.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Park, M., Kim, S.J., Vitale, A., and Hwang, I., Identification of the protein storage vacuole and protein targeting to the vacuole in leaf cells of three plant species, Plant Physiol., 2004, vol. 134, pp. 625–639.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Pedrazzini, E., Giovinazzo, G., Bielli, A., et al., Protein quality control along the route to the plant vacuole, Plant Cell, 1997, vol. 9, pp. 1869–1880.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Neuhaus, J.M. and Rogers, J.C., Sorting of proteins to vacuoles in plant cells, Plant. Mol. Biol., 1998, vol. 38, pp. 127–144.

    Article  PubMed  CAS  Google Scholar 

  56. Jiang, L. and Rogers, J.C., Sorting of lytic enzymes in the plant Golgi apparatus, Ann. Plant Rev., 2003, vol. 9, pp. 114–140.

    CAS  Google Scholar 

  57. Niemes, S., Labs, M., Scheuring, D., et al., Sorting of plant vacuolar proteins is initiated in the ER, Plant J., 2010, vol. 62, pp. 601–614.

    Article  PubMed  CAS  Google Scholar 

  58. Chrispeels, M.J. and Raikhel, N.V., Short peptide domains target proteins to vacuoles, Cell, 1992, vol. 68, pp. 613–616.

    Article  PubMed  CAS  Google Scholar 

  59. Holwerda, B.C., Padgett, H.S., and Rogers, J.C., Proaleurain vacuolar targeting is mediated by short contiguous peptide interactions, Plant Cell, 1992, vol. 4, pp. 307–318.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Nakamura, K., Matsuoka, K., Mukumoto, F., and Watanabe, N., Processing and transport to the vacuole of a precursor to sweet potato sporamin in transformed tobacco cell line BY-2, J. Exp. Bot., 1993, vol. 44, pp. 331–338.

    CAS  Google Scholar 

  61. Frigerio, L., Jolliffe, N.A., Di Cola, A., et al., The internal propeptide of the ricin precursor carries a sequence-specific determinant for vacuolar sorting, Plant Physiol., 2001, vol. 126, pp. 167–173.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Bednarek, S.Y. and Raikhel, N.V., The barley lectin carboxy-terminal propeptide is a vacuolar protein sorting determinant of plants, Plant Cell, 1991, vol. 3, pp. 1195–1206.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Matsuoka, K., Bassham, D.C., Raikhel, N.V., and Nakamura, K., Different sensitivity to wortmannin of two vacuolar sorting signals indicates the presence of distinct sorting machineries in tobacco cells, J. Cell Biol., 1995, vol. 6, pp. 1307–1318.

    Article  Google Scholar 

  64. Dombrowski, J.E., Schroeder, M.R., Bednarek, S.Y., and Raikhel, N.V., Determination of the functional elements within the vacuolar targeting signal of barley lectin, Plant Cell, 1993, vol. 5, pp. 587–596.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Neuhaus, J.M., Pietrzak, M., and Boller, T., Mutation analysis of the C-terminal vacuolar targeting peptide of tobacco chitinase: low specificity of the sorting system, and gradual transition between intracellular retention and secretion into the extracellular space, Plant J., 1994, vol. 5, pp. 45–54.

    Article  PubMed  CAS  Google Scholar 

  66. Frigerio, L., de Virgilio, M., Prada, A., et al., Sorting of phaseolin to the vacuole is saturable and requires a short C-terminal peptide, Plant Cell, 1998, vol. 10, pp. 1031–1042.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  67. Miao, Y., Ding, Y., Sun, Q-Y., et al., Plant bioreactors for pharmaceuticals, Biotechnol. Genet. Engineer. Rev., 2008, vol. 25, pp. 363–380.

    Article  CAS  Google Scholar 

  68. Tague, B.W., Diskenson, C.D., and Chrispeels, M.J., A short domain of the plant vacuolar protein phytohemagglutinin targets invertase to the yeast vacuole, Plant Cell, 1990, vol. 2, pp. 533–546.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Daalbach, G., Jung, R., Kunze, G., et al., Different legumin protein domains act as vacuolar targeting signals, Plant Cell, 1991, vol. 3, pp. 695–708.

    Article  Google Scholar 

  70. Gomez, L. and Chrispeels, M.J., Tonoplast and soluble vacuolar proteins are targeted by different mechanisms, Plant Cell, 1993, vol. 5, pp. 1113–1124.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. Hoffe, H. and Chrispeels, M.J., Protein sorting to the vacuolar membrane, Plant Cell, 1992, vol. 4, pp. 995–1004.

    Article  Google Scholar 

  72. Jiang, L. and Rogers, J.C., Integral membrane protein sorting to vacuoles in plant cells: evidence for two pathways, J. Cell Biol., 1998, vol. 143, pp. 1183–1199.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Kirsch, T., Paris, N., Butler, J.M., et al., Purification and initial characterization of a potential plant vacuolar targeting receptor, Proc. Natl. Acad. Sci. U.S.A., 1994, vol. 91, pp. 3403–3407.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  74. Jiang, L. and Sun, S.S., Membrane anchors for vacuolar targeting: application in plant bioreactors, Trends Biotechnol., 2002, vol. 20, pp. 99–102.

    Article  PubMed  CAS  Google Scholar 

  75. Ahmed, S.U., Bar-Peled, M., and Raikhel, N.V., Cloning and subcellular location of an Arabidopsis receptorlike protein that shares common features with proteinsorting receptors of eukaryotic cells, Plant Physiol., 1997, vol. 114, pp. 325–336.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Hohl, I., Robinson, D.G., Maarten, J., et al., Transport of storage proteins to the vacuole is mediated by vesicles without a clathrin coat, J. Cell Sci., 1996, vol. 109, pp. 2539–2550.

    PubMed  CAS  Google Scholar 

  77. Sanderfoot, A.A., Ahmed, S.U., Marty-Mazars, D., et al., A putative vacuolar cargo receptor partially colocalizes with atpep12p on a prevacuolar compartment in Arabidopsis roots, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, pp. 9920–9925.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  78. Sanderfoot, A.A. and Raikhel, N.V., The specificity of vesicle trafficking: coat proteins and snares, Plant Cell, 1999, vol. 11, pp. 629–641.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  79. Shimada, T., Fuji, K., Tamura, K., et al., Vacuolar sorting receptor for seed storage proteins in Arabidopsis thaliana, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, pp. 16095–16100.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  80. Avila, E.L., Brown, M., Pan, S., et al., Expression analysis of Arabidopsis vacuolar sorting receptor 3 reveals a putative function in guard cells, J. Exp. Bot., 2008, vol. 59, pp. 1149–1161.

    Article  PubMed  CAS  Google Scholar 

  81. Park, J.H., Oufattole, M., and Rogers, J.C., Golgimediated vacuolar sorting in plant cells: RMR proteins are sorting receptors for the protein aggregation/membrane internalization pathway, Plant Sci., 2007, vol. 172, pp. 728–745.

    Article  CAS  Google Scholar 

  82. Kriegel, M.A., Rathinam, C., and Flavell, R.A., E3 ubiquitin ligase grail controls primary T cell activation and oral tolerance, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, pp. 16770–16775.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Robinson, D.G., Hinz, G., and Holstein, S.E.H., The molecular characterization of transport vesicles, Plant. Mol. Biol., 1998, vol. 38, pp. 49–76.

    Article  PubMed  CAS  Google Scholar 

  84. Hwang, I. and Robinson, D.G., Transport vesicle formation in plant cells, Curr. Opin. Plant Biol., 2009, vol. 12, pp. 660–669.

    Article  PubMed  CAS  Google Scholar 

  85. Tse, Y.C., Mo, B., Hillmer, S., et al., Identification of multivesicular bodies as prevacuolar compartments in Nicotiana tabacum BY-2 cells, Plant Cell, 2004, vol. 16, pp. 672–693.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  86. Sanmartin, M., Ordonez, A., Sohn, E.J., et al., Divergent functions of VTI12 and VTI11 in trafficking to storage and lytic vacuoles in Arabidopsis, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, pp. 3645–3650.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  87. Grefen, C., Honsbein, A., and Blatt, M.R., Ion transport, membrane traffic and cellular volume control, Curr. Opin. Plant Biol., 2011, vol. 14, pp. 332–339.

    Article  CAS  Google Scholar 

  88. Shen, Y., Wang, J., Ding, Y., et al., The rice RMR1 associates with a distinct prevacular compartment for the protein storage vacuole pathway, Mol. Plant, 2011, vol. 5, pp. 854–868.

    Article  CAS  Google Scholar 

  89. Hillmer, S., Mjvafechi, A., Robinson, D.G., and Hinz, G., Vacuolar storage proteins are sorted in the cis-cisternae of the pea cotyledon Golgi apparatus, J. Cell Biol., 2001, vol. 152, pp. 41–50.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  90. Galili, G., Er derived compartments are formed by highly regulated processes and have special functions in plants, Plant Physiol., 2004, vol. 136, pp. 3411–3413.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  91. Hara-Hishimura, I., Matsushima, R., Shimada, T., and Nishimura, M., Diversity and formation of endoplasmic reticulum-derived compartments in plants. Are these compartments specific to plant cells? Plant Physiol., 2004, vol. 136, pp. 3435–3439.

    Article  CAS  Google Scholar 

  92. Toyooka, K., Okamoto, T., and Minamikawa, T., Mass transport of proform of a KDEL-tailed cysteine proteinase (SH-EP) to protein storage vacuoles by endoplasmic reticulum-derived vesicle is involved in protein mobilization in germinating seeds, J. Cell Biol., 2000, vol. 148, pp. 453–464.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  93. Hara-Nishimura, I., Shimada, T., Hatano, K., et al., Transport of storage proteins to protein storage vacuoles is mediated by large precursor-accumulating vesicles, Plant Cell, 1998, vol. 10, pp. 825–836.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Isayenkov.

Additional information

Original Ukrainian Text © S.V. Isayenkov, 2014, published in Tsitologiya i Genetika, 2014, Vol. 48, No. 2, pp. 71–82.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isayenkov, S.V. Plant vacuoles: Physiological roles and mechanisms of vacuolar sorting and vesicular trafficking. Cytol. Genet. 48, 127–137 (2014). https://doi.org/10.3103/S0095452714020042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452714020042

Keywords

Navigation