Skip to main content
Log in

Inhibitors of tyrosine kinases and phosphatases as a tool for the investigation of microtubule role in plant cold response

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Tyrosine phosphorylation plays a vital role in the variety of signal transduction pathways in eukaryotic cells, however its role and relevance in plants are still largely unknown. To investigate the functional role of tubulin tyrosine phosphorylation in plant cells the interplay between the effects of tyrosine kinases (herbimycin A) as well as tyrosine phosphatases (sodium orthova nadate) inhibitors on microtubules sensitivity to cold in A. thaliana root cells were studied. Since it was found that inhibition of tyrosine kinases significantly increased the microtubules sensitivity to cold, while inhibition of tyrosine phophatases enhanced their cold-resistance, we suggest an existence of certain functional interaction between the phosphorylation on tyrosine residues and sensitivity of cortical microtubules to low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mayer, U. and Jürgens, G., Microtubule Cytoskeleton: a Track Record, Curr. Opin. Plant Biol., 2002, vol. 5, no. 6, pp. 494–501.

    Article  PubMed  CAS  Google Scholar 

  2. Hasezawa, S. and Kumagai, F., Dynamic Changes and the Role of the Cytoskeleton During the Cell Cycle in Higher Plant Cells, Int. Rev. Cytol., 2002, vol. 214, pp. 161–191.

    Article  PubMed  CAS  Google Scholar 

  3. Ehrhardt, D.W. and Shaw, S.L., Microtubule Dynamics and Organization in the Plant Cortical Array, Ann. Rev. Plant Biol., 2006, vol. 57, pp. 859–875.

    Article  CAS  Google Scholar 

  4. Guo, L., Ho, C.-M.K., Kong, Z., Lee, Y.-R.J., Qian, Q., and Liu, B., Evaluating the Microtubule Cytoskeleton and Its Interacting Proteins in Monocots by Mining the Rice Genome, Ann. Bot., 2009, vol. 103, no. 3, pp. 387–402.

    Article  PubMed  CAS  Google Scholar 

  5. Goddard, R.H., Wick, S.M., Silflow, C.D., and Snustad, D.P., Microtubule Components of the Plant Cell Cytoskeleton, Plant Physiol., 1994, vol. 104, no. 1, pp. 1–6.

    PubMed  CAS  Google Scholar 

  6. Cheng, Z., Snustad, D.P., and Carter, J.V., Temporal and Spatial Expression Patterns of TUB9, β-Tubulin Gene of Arabidopsis thaliana, Plant. Mol. Biol., 2001, vol. 47, no. 3, pp. 389–398.

    Article  PubMed  CAS  Google Scholar 

  7. Abdrakhamanova, A., Wang, Q., Khokhlova, L., and Nick, P., Is Microtubule Disassembly a Trigger for Cold Acclimation?, Plant Cell Physiol., 2003, vol. 44, no. 7, pp. 676–686.

    Article  PubMed  CAS  Google Scholar 

  8. Parrotta, L., Cai, G., and Cresti, M., Changes in the Accumulation of α- and β-Tubulin during Bud Development in Vitis vinifera L, Planta, 2010, vol. 231, no. 2, pp. 277–291.

    Article  PubMed  CAS  Google Scholar 

  9. Yu, Y., Li, Y., Li, L., Lin, J., Zheng, C., and Zhang, L., Overexpression of PwTUA1, a Pollen-Specific Tubulin Gene, Increases Pollen Tube Elongation by Altering the Distribution of α-Tubulin and Promoting Vesicle Transport, J. Exp. Bot., 2009, vol. 60, no. 9, pp. 2737–2749.

    Article  PubMed  CAS  Google Scholar 

  10. Cai, G., Assembly and Disassembly of Plant Microtubules: Tubulin Modifications and Binding to MAPs, J. Exp. Bot., 2010, vol. 61, no. 3, pp. 623–626.

    Article  PubMed  CAS  Google Scholar 

  11. Duckett, C.M. and Lloyd, C.W., Gibberellic Acid-Induced Microtubule Reorientation in Dwarf Peas Is Accompanied by Rapid Modification of an α-Tubulin Isotypes, Plant J., 1994, vol. 5, pp. 363–372.

    Article  CAS  Google Scholar 

  12. Blume, Ya.B., Smertenko, A., Ostapets, N.N., Viklick, V., and Draber, P., Post-Translational Modifications of Plant Tubulin, Cell Biol. Int., 1997, vol. 21, pp. 918–920.

    Google Scholar 

  13. Gilmer, S., Clay, P., MacRae, T.H., and Fowke, L.C. Acetylated Tubulin Is Found in All Microtubule Arrays of Two Species of Pine, Protoplasma, 1999, vol. 207, pp. 174–185.

    Article  CAS  Google Scholar 

  14. Gilmer, S. and Clay, P., MacRae T.H., Fowke L.C. Tyrosinated, but not Detyrosinated, α-Tubulin Is Present in Root Tip Cells, Protoplasma, 1999, vol. 210, pp. 92–98.

    Article  CAS  Google Scholar 

  15. Huang, Y., Li, H., Gupta, R., Morris, P.C., Luan, S., and Kieber, J.J., AtMPK4, an Arabidopsis Homolog of Mitogen-Activated Protein Kinases, Is Activated in vitro by At-MEK1 through Threonine Phosphorylation, Plant Physiol., 2000, vol. 122, no. 4, pp. 1301–1310.

    Article  PubMed  CAS  Google Scholar 

  16. Blume, Ya., Yemets, A., Sulimenko, V., Sulimenko, T., Chan, J., Lloyd, C., and Dráber, P., Tyrosine Phosphorylation of Plant Tubulin, Planta, 2008, vol. 229, pp. 143–150.

    Article  PubMed  CAS  Google Scholar 

  17. Yemets, A.I., Krasylenko, Yu.A., Lytvyn, D.I., Sheremet, Ya.A., and Blume, Ya.B., Nitric Oxide Signaling via Cytoskeleton in Plants, Plant Sci., 2011, vol. 181, no. 5, pp. 545–554.

    Article  PubMed  CAS  Google Scholar 

  18. Blume, Ya., Yemets, A., Sheremet, Ya., Nyporko, A., Sulimenko, V., Sulimenko, T., and Dárber, P., Exposure of Beta-Tubulin Regions Defined by Antibodies on an Arabidopsis thaliana Microtubule Protofilament Model and in the Cells, BMC Plant Biol, 2010, vol. 10, no. 29, pp. 1–10.

    Google Scholar 

  19. Sheremet, I., Yemets, A., Dráber, P., and Blume, Ya.B., Plant Microtubules Are Modified by the Tyrosine Phosphorylation in Arabidopsis Root Cells, in Annual Main Meeting of Society for Experimental Biology: Abstract Book, Prague, 2010, p. 246.

  20. Yemets, A., Sheremet, Y., Vissenberg, K., Van Orden, J., Verbelen, J.P., and Blume, Ya.B., Effects of Tyrosine Kinase and Phosphatase Inhibitors on Microtubules in Arabidopsis Root Cells, Cell Biol. Int., 2008, vol. 32, no. 6, pp. 630–637.

    Article  PubMed  CAS  Google Scholar 

  21. Wallin, M. and Strmberg, E., Cold-Stable and Cold-Adapted Microtubules, Int. Rev. Cytol., 1995, vol. 157, pp. 1–31.

    Article  PubMed  CAS  Google Scholar 

  22. Mizuno, K., Induction of Cold Stability of Microtubules in Cultured Tobacco Cells, Plant Physiol., 1992, vol. 100, no. 2, pp. 740–748.

    Article  PubMed  CAS  Google Scholar 

  23. Baluka, F., Mancuso, S., Volkmann, D., and Barlow, P.W., Root Apex Transition Zone: a Signaling-Response Nexus in the Root, Trends Plant Sci., 2010, vol. 15, no. 7, pp. 402–408.

    Article  Google Scholar 

  24. Zhao, J.L., Li, X.J., Zhang, H., and Li, Y., Chilling Stability of Microtubules in Root-Tip Cells of Cucumber, Plant Cell Rep., 2003, vol. 22, no. 1, pp. 32–37.

    Article  PubMed  CAS  Google Scholar 

  25. Farajalla, M.R. and Gulick, P.J., The α-Tubulin Gene Family in Wheat (Triticum aestivum L.) and Differential Gene Expression during Cold Acclimation, Genome, 2007, vol. 50, pp. 502–510.

    Article  CAS  Google Scholar 

  26. Cyr, R.J. and Palevitz, B.A., Organization of Cortical Microtubules in Plant Cells, Curr. Opin. Cell Biol., 1995, vol. 7, no. 1, pp. 65–71.

    Article  PubMed  CAS  Google Scholar 

  27. Blume, Ya.B., Lloyd, C.W., and Yemets, A.I., Plant Tubulin Phosphorylation and Its Role in Cell Cycle Progression, in The Plant Cytoskeleton: A Key Tool for Agro-Biotechnology, Blume, Ya.B., Baird, W.V., Yemets, A.I., and Breviario, D., Eds., Berlin: Springer-Verlag, 2008, pp. 145–159.

    Google Scholar 

  28. Sheremet, Ya.A., Yemets, A.I., Verbelen, J.-P., and Blume, Ya.B., The Effect of Okadaic Acid on Arabidopsis thaliana Root Morphology and Microtubule Organization in Its Cells, Cytol. Genet., 2009, vol. 43, no. 1, pp. 3–10.

    Article  CAS  Google Scholar 

  29. Sheremet, Ya.A., Yemets, A.I., Vissenberg, K., Verbelen, J.-P., and Blume, Ya.B., Effects of Inhibitors of Serine/Threonine Protein Kinases on Arabidopsis thaliana Root Morphology and Microtubule Organization in Its Cells, Cell Tiss. Biol., 2010, vol. 4, no. 4, pp. 399–409.

    Article  Google Scholar 

  30. Mathur, J. and Chua, N.H., Microtubule Stabilization Leads To Growth Reorientation in Arabidopsis Trichomes, Plant Cell, 2000, vol. 12, no. 4, pp. 465–477.

    Article  PubMed  CAS  Google Scholar 

  31. Yemets, A.I., Krasylenko, Yu.A., Sheremet, Ya.A., and Blume, Ya.B., Microtubule Reorganization as a Response to Implementation of NO Signals in Plant Cells, Cytol. Genet., 2009, vol. 43, no. 2, pp. 73–79.

    Article  Google Scholar 

  32. Baluka, F., Parker, J.S., and Barlow, P.W., The Microtubular Cytoskeleton in Cells of Cold-Treated Roots of Maize (Zea mays L.) Shows Tissue-Specific Responses, Protoplasma, 1993, vol. 172, pp. 84–96.

    Article  Google Scholar 

  33. Kalinina, I., Shevchenko, G., and Kordyum, E., Tubulin Cytoskeleton in Arabidopsis thaliana Root Cells under Clinorotation, Microgravity Sci. Technol., 2009, vol. 21, nos. 1/2, pp. 187–190.

    Article  CAS  Google Scholar 

  34. Krasylenko, Yu.A., Yemets, A.I., Sheremet, Ya.O., and Blume, Ya.B., Nitric Oxide as a Critical Factor for Arabidopsis Microtubules Perception of UV-B Irradiation, Physiol Plant, 2011. doi:10.1111/j.1399-3054.2011.01520x

  35. Monroy, A.F., Sangwan, V., and Dhindsa, R.S., Low Temperature Signal Transduction during Cold Acclimation: Protein Phosphatase 2A as an Early Target for Cold Inactivation, Plant J., 1998, vol. 13, pp. 653–660.

    Article  CAS  Google Scholar 

  36. Sangwan, V., Foulds, I., Singh, J., and Dhindsa, R.S., Cold-Activation of Brassica napus BN115 Promoter Is Mediated by Structural Changes in Membranes and Cytoskeleton, and Requires Ca2+ Influx, Plant J., 2001, vol. 27, no. 1, pp. 1–12.

    Article  PubMed  CAS  Google Scholar 

  37. Kameyama, K., Kishi, Y., Yoshimura, M., Kanzawa, N., Sameshima, M., and Tsuchiya, T., Tyrosine Phosphorylation in Plant Bending, Nature, 2000, vol. 407, no. 6800, p. 37.

    Article  PubMed  CAS  Google Scholar 

  38. MacRobbie, E.A., Evidence for a Role for Protein Tyrosine Phosphatase in the Control of Ion Release from the Guard Cell Vacuole in Stomatal Closure, Proc. Nat. Acad. Sci. USA., 2002, vol. 99, no. 18, pp. 11963–11968.

    Article  PubMed  CAS  Google Scholar 

  39. Zi, H., Xiang, Y., Li, M., Wang, T., and Ren, H., Reversible Protein Tyrosine Phosphorylation Affects Pollen Germination and Pollen Tube Growth via the Actin Cytoskeleton, Protoplasma, 2007, vol. 230, nos. 3/4, pp. 183–191.

    Article  PubMed  CAS  Google Scholar 

  40. Bretz, J.R., Mock, N.M., Charity, J.C., Zeyad, S., Baker, C.J., and Hutcheson, S.W., A Translocated Protein Tyrosine Phosphatase of Pseudomonas syringae pv. Tomato DC3000 Modulates Plant Defense Response to Infection, Mol. Microbiol., 2003, vol. 49, pp. 389–400.

    Article  PubMed  CAS  Google Scholar 

  41. Espinosa, A., Guo, M., Tam, V.C., Fu, Z.Q., and Alfano, J.R., The Pseudomonas syringae Type III-Secreted Protein HopPtoD2 Possesses Protein Tyrosine Phosphatase Activity and Suppresses Programmed Cell Death in Plants, Mol. Microbiol., 2003, vol. 49, no. 2, pp. 377–387.

    Article  PubMed  CAS  Google Scholar 

  42. Huang, S., Blanchoin, L., Kovar, D.R., and Staiger, C.J., Arabidopsis Capping Protein (AtCP) Is a Heterodimer That Regulates Assembly at the Barbed Ends of Actin Filaments, J. Biol. Chem., 2003, vol. 278, no. 45, pp. 44832–44842.

    Article  PubMed  CAS  Google Scholar 

  43. Luan, S., Tyrosine Phosphorylation in Plant Cell Signaling, Proc. Nat. Acad. Sci. U.S.A., 2002, vol. 99, no. 18, pp. 11567–11569.

    Article  CAS  Google Scholar 

  44. Ghelis, T., Bolbach, G., Clodic, G., Habricot, Y., Miginiac, E., Sotta, B., and Jeannette, E., Protein Tyrosine Kinases and Protein Tyrosine Phosphatases Are Involved in Abscisic Acid-Dependent Processes in Arabidopsis Seeds and Suspension Cells, Plant Physiol., 2008, vol. 148, no. 3, pp. 1668–1680.

    Article  PubMed  CAS  Google Scholar 

  45. Bentem van, S. and Hirt, H., Protein Tyrosine Phosphorylation in Plants: More Abundant Than Expected? Trends Plant Sci., 2009, vol. 14, no. 2, pp. 71–76.

    Article  Google Scholar 

  46. Jaillais, Y., Hothorn, M., Belkhadir, Y., Dabi, T., Nimchuk, Z.L., Meyerowitz, E.M., and Chory, J., Tyrosine Phosphorylation Controls Brassinosteroid Receptor Activation by Triggering Membrane Release of Its Kinase Inhibitor, Genes Dev., 2011, vol. 25, no. 3, pp. 232–237.

    Article  PubMed  CAS  Google Scholar 

  47. Mithoe, C.S. and Menke, F.L.H., Phosphoproteomics Perspective on Plant Signal Transduction and Tyrosine Phosphorylation, Phytochemistry, 2011, vol. 72, no. 10, pp. 997–1006.

    Article  PubMed  CAS  Google Scholar 

  48. Blume, Ya.B., Karpov, P.A., Nyporko, A.Yu., Samofalova, D.A., Sheremet, Ya.O., and Yemets, A.I., Bioinformatic Analysis of Arabidopsis Kinome and Phosphatome for Investigation of Microtubule Functions and Applied Aspects of Their Regulation, in Biotechnology Conference: Science and Advance in the Black Sea Region, Albena, 2008, pp. 1–3.

  49. Dash, A., Evidence for the Presence of Non-Receptor Protein Tyrosine Kinases in Algal Cells, Acta Physiol. Plant., 2010, vol. 32, no. 1, pp. 177–182.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. A. Sheremet.

Additional information

The article is published in the original.

About this article

Cite this article

Sheremet, Y.A., Yemets, A.I. & Blume, Y.B. Inhibitors of tyrosine kinases and phosphatases as a tool for the investigation of microtubule role in plant cold response. Cytol. Genet. 46, 1–8 (2012). https://doi.org/10.3103/S0095452712010112

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452712010112

Keywords

Navigation