Skip to main content
Log in

P-Peven T-Odd Asymmetries in Differential Cross sections of Fission Reactions for Unoriented Nuclei by Cold Polarized Neutrons with Emission of Prescission and Evaporative Light Particles

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

Differential cross sections \({d\sigma_{nf,p}(\theta)\mathord{\left/{\vphantom{d\sigma_{nf,p}(\theta)d\Omega}}\right.\kern-1.2pt}d\Omega}\) of the fission of unoriented target nuclei by cold polarized neutrons with the emission of light particles (\(p\)), which include prescission \(\alpha\)-particles and evaporative neutrons and \(\gamma\)-quanta, can be represented as the sum of the cross section \({d\sigma_{nf,p}^{0}(\theta)/d\Omega}\) corresponding to unpolarized neutrons, and the cross section \({d\sigma_{nf,p}^{1}(\theta)/d\Omega}\), which is linearly related to the neutron polarization vector \(\boldsymbol{\sigma}_{n}\). The latter cross section is expressed as the sum of Peven odd ternary \(A\left(\boldsymbol{\sigma}_{n}\left[\mathbf{k}_{LF},\mathbf{k}_{p}\right]\right)\) and quinary \(B\left(\boldsymbol{\sigma}_{n}\left[\mathbf{k}_{LF},\mathbf{k}_{p}\right]\right)\left(\mathbf{k}_{LF},\mathbf{k}_{p}\right)\) scalar correlators, whose signs change and do not change, respectively, in the transformation \(\theta\to\pi-\theta\). The experimental cross sections \({d\sigma_{nf,p}(\theta)/d\Omega}\) and \({d\sigma_{nf,p}^{0}(\theta)/d\Omega}\) were used to find the experimental values of the above correlators. In this study, in the framework of the quantum fission theory with account for the Coriolis interaction of the total spin of the compound fissile nuclei with orbital angular momenta of fission fragments and prescission \(\alpha\)-particles, it was possible to satisfactorily describe the characteristics of the above experimental correlators in the case of emission of these \(\alpha\)-particles and prompt neutrons and \(\gamma\)-quanta for most considered target nuclei. A noticeable discrepancy between theoretical and experimental characteristics was observed for the ternary correlator only in the case of \(\alpha\)-particles for the \({}^{233}\)U target nucleus. This mismatch is probably related to taking the additional mechanism of such correlators formation determined by the influence of transverse bending and wriggling oscillations of the compound fissile nucleus in the neighborhood of its scission point with \(\alpha\)-particle escaping from the neck of the nucleus into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

REFERENCES

  1. P. Jessinger, A. Koetzle, F. Gonnenwein, et al., Phys. At. Nucl. 65, 662 (2002).

    Article  Google Scholar 

  2. A. M. Gagarski, I. S. Guseva, F. Gonnenwein, et al., in Proceedings of the International Seminar on Interaction of Neutrons with Nuclei ISINN-14, Dubna, Russia, 2006 (JINR, Dubna, 2007), p. 93.

  3. A. M. Gagarski, G. A. Petrov, I. S. Guseva, et al., in Proceedings of the International Seminar on Interaction of Neutrons with Nuclei ISINN-16, Dubna, Russia, 2008 (JINR, Dubna, 2009), p. 356.

  4. A. Gagarski, F. Goennenwein, I. Guseva, et al., Phys. Rev. C 93, 054619 (2016).

    Article  ADS  Google Scholar 

  5. I. Guseva and Yu. Gusev, AIP Conf. Proc. 1175, 355 (2009).

    Article  ADS  Google Scholar 

  6. G. V. Danilyan, J. Klenke, Yu. N. Kopach, V. A. Krakhotin, V. V. Novitsky, V. S. Pavlov, and P. B. Shatalov, Phys. At. Nucl. 77, 677 (2014).

    Article  Google Scholar 

  7. A. M. Gagarski, I. S. Guseva, F. Goennenwein, et al., Crystallogr. Rep. 56, 1238 (2011).

    Article  ADS  Google Scholar 

  8. I. S. Guseva, A. M. Gagarski, Y. I. Gusev, G. A. Petrov, and G. V. Valski, Phys. Part. Nucl. Lett. 10, 331 (2013).

    Article  Google Scholar 

  9. I. S. Guseva and Yu. I. Gusev, Bull. Russ. Acad. Sci.: Phys. 71, 367 (2007).

    Article  Google Scholar 

  10. G. V. Danilyan, P. Granz, V. A. Krakhotin, et al., Phys. Lett. B 679, 25 (2009).

    Article  ADS  Google Scholar 

  11. G. V. Danilyan, J. Klenke, V. A. Krakhotin, et al., Phys. At. Nucl. 73, 1155 (2010).

    Article  Google Scholar 

  12. V. E. Bunakov, S. G. Kadmensky, and S. S. Kadmensky, Phys. At. Nucl. 73, 1429 (2010).

    Article  Google Scholar 

  13. V. E. Bunakov, S. G. Kadmensky, and S. S. Kadmensky, Phys. At. Nucl. 71, 1887 (2008).

    Article  Google Scholar 

  14. S. G. Kadmensky, L. V. Titova, and V. E. Bunakov, Phys. At. Nucl. 82, 254 (2019).

    Article  Google Scholar 

  15. J. R. Nix and W. J. Swiatecky, Nucl. Phys. 71, 1 (1965).

    Article  Google Scholar 

  16. A. Borh and B. Mottelson, Nuclear Structure (Benjamin, New York, 1977).

    Google Scholar 

  17. D. E. Lyubashevsky and S. G. Kadmenskii, Bull. Russ. Acad. Sci.: Phys. 74, 791 (2010).

    Article  Google Scholar 

  18. S. G. Kadmensky, V. E. Bunakov, and D. E. Lyubashevsky, Bull. Russ. Acad. Sci.: Phys. 83, 1128 (2019).

    Article  Google Scholar 

  19. S. G. Kadmensky, D. E. Lyubashevsky, and P. V. Kostryukov, Phys. At. Nucl. 82, 267 (2019).

    Article  Google Scholar 

  20. A. Gavron, Phys. Rev. C 13, 2562 (1976).

    Article  ADS  Google Scholar 

  21. J. B. Wilhelmy et al., Phys. Rev. C 5, 2041 (1972).

    Article  ADS  Google Scholar 

  22. L. G. Moretto, G. F. Peaslee, and G. J. Wozniak, Nucl. Phys. A 502, 453 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Lyubashevsky.

Additional information

Translated by E. Baldina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyubashevsky, D.E. P-Peven T-Odd Asymmetries in Differential Cross sections of Fission Reactions for Unoriented Nuclei by Cold Polarized Neutrons with Emission of Prescission and Evaporative Light Particles. Moscow Univ. Phys. 76, 313–319 (2021). https://doi.org/10.3103/S002713492105012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S002713492105012X

Keywords:

Navigation