Skip to main content
Log in

Effect of the atmospheric electric field under a thundercloud on tornado funnel formation

  • Published:
Moscow University Mechanics Bulletin Aims and scope

Abstract

The effect of the atmospheric electric field under a thundercloud on the formation and motion of a tornado funnel is considered. It is shown that the electric force may cause the descent of the developing funnel to the Earth’s surface or its ascent back to the thundercloud.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. V. Nalivkin, Hurricanes, Storms, and Whirlwinds. Geographic Features and Geological Activity (Nauka, Leningrad, 1969) [in Russian].

    Google Scholar 

  2. L. Bengtsson and J. Lighthill (Eds.), Intensive Atmospheric Vortices (Springer, New York, 1982, Mir, Moscow, 1985).

    Google Scholar 

  3. M. V. Kurganskii, “Helicity Generation in the Moist Atmosphere,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 29 (4), 464–469 (1993)

    Google Scholar 

  4. B. Vonnegut, “Electrical Theory of Tornadoes,” J. Geophys. Res. 65 (1), 203–212 (1960).

    Article  ADS  Google Scholar 

  5. V. L. Natyaganov and S. A. Maslov, “Electromagnetic Mechanisms of Forming a Tornado-Like Whirlwind,” Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No. 2, 32–38 (2014) [Moscow Univ. Mech. Bull. 69 (2), 29–34 (2014)].

    Google Scholar 

  6. S. A. Maslov, “The Influence of Tripole Structure of Thundercloud Charge on Secondary Circulation in Tornadoes,” in Fluxes and Structures in Fluids (Maks Press, Moscow, 2013), pp. 206–209.

    Google Scholar 

  7. E. V. Shcherbinin (Ed.), Electrovortex Flows (Zinatne, Riga, 1985) [in Russian].

    Google Scholar 

  8. A. G. Boev, “Tornado Plasma Theory,” Vopr. At. Nauki Tekh., No. 4, 133–138 (2008).

    Google Scholar 

  9. S. A. Maslov, “Electric Mechanisms of Vorticity Amplification in the Funnel of a Tornado,” Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No. 6, 54–58 (2015) [Moscow Univ. Mech. Bull. 70 (6), 149–152 (2015)].

    MATH  Google Scholar 

  10. Ya. I. Frenkel’, Theory of Atmospheric Electricity (GITTL, Moscow, 1949) [in Russian].

    Google Scholar 

  11. E. R. Williams, “The Tripole Structure of Thunderstorms,” J. Geophys. Res. D. 94 (11), 13.151–13.167 (1989).

    Google Scholar 

  12. A. A. Evtushenko and E. A. Mareev, “Generating Electric-Discharge Layers in Mesoscale Convective Systems,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 45 (2), 255–265 (2009) [Izv., Atmos. Ocean. Phys. 45 (2), 242–252 (2009)].

    Google Scholar 

  13. G. S. Golitsyn (Ed.) Theory of Mesoscale Turbulence. Atmospheric and Oceanic Vortices (Regular and Chaotic Dynamics, Izhevsk, 2010) [in Russian].

    Google Scholar 

  14. V. A. Saranin, Stability of Equilibrium, Charging, Convection, and Interaction of Liquid Masses in Electric Fields (Regular and Chaotic Dynamics, Izhevsk, 2009) [in Russian].

    Google Scholar 

  15. L. D. Landau and E. M. Lifschitz, Electrodynamics of Continuous Media (Nauka, Moscow, 1992; Wiley, New York, 1999).

    Google Scholar 

  16. V. L. Natyaganov, S. A. Maslov, and V. E. Sytov, “The Effect of Thundercloud Electric Structure on Tornado and Downburst Formation,” in Modern Problems in Electrophysics and Electrohydrodynamics (Petrogradskii Press, St. Petersburg, 2015), pp. 85–88.

    Google Scholar 

  17. V. L. Natyaganov, S. V. Kiseleva, S. A. Maslov, and V. E. Sytov, “The Effect of Electromagnetic Factors on the Formation and Dynamics of Intensive Atmospheric Vortices,” in Fundamental Problems of Theoretical and Applied Mechanics (Kazan Federal Univ., Kazan, 2015), pp. 2739–2741.

    Google Scholar 

  18. S. A. Maslov, V. L. Natyaganov, and V. E. Sytov, “The Effect of Electromagnetic Factors and Thundercloud Electric Structure on Tornado and Downburst Formation,” in Fundamental and Applied Problems of Science (Ross. Akad. Nauk, Moscow, 2015), pp. 77–87.

    Google Scholar 

  19. S. A. Maslov and V. L. Natyaganov, “Influence of an Electric Thundercloud Structure on Forming the Tornado-Like Vortices,” Prikl. Fiz. No. 6, 16–20 (2016).

    Google Scholar 

  20. A. V. Kistovich and Yu. D. Chashechkin, Vorticity and Helicity Structures in Ideal Fluids, Preprint No. 627 (Ishlinskii Institute for Problems of Mechanics, Moscow, 1998).

    Google Scholar 

  21. S. V. Alekseenko, P. A. Kuibin, and V. L. Okulov, Theory of Concentrated Vortices: An Introduction (Kutateladze Institute of Thermophysics, Novosibirsk, 2003; Springer, Heidelberg, 2007).

    MATH  Google Scholar 

  22. H. Lamb, Hydrodynamics (Dover, New York, 1945; GITTL, Moscow, 1947).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Maslov.

Additional information

Original Russian Text © S.A. Maslov, 2017, published in Vestnik Moskovskogo Universiteta, Matematika. Mekhanika, 2017, Vol. 72, No. 1, pp. 57–61.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslov, S.A. Effect of the atmospheric electric field under a thundercloud on tornado funnel formation. Moscow Univ. Mech. Bull. 72, 23–27 (2017). https://doi.org/10.3103/S0027133017010058

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027133017010058

Navigation