Skip to main content
Log in

Special Fatigue Fracture Behavior of Nanocrystalline Metals under Hydrogen Conditions

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

In view of the effect of hydrogen on the mechanical behavior of nanocrystal materials, a hydrogen embrittlement model is proposed based on the method of continuous distribution dislocation from the perspective of fracture mechanics. The effects of hydrogen on mechanical parameters such as surface energy, lattice friction, shear modulus, and atomic bonding force are analyzed to investigate the effects of crack tip (CT) dislocation emission on crack propagation rate, CT plastic zone and dislocation free zone size, as well as the initiation of nanocracks at grain boundaries (GBs) and within grains under hydrogen conditions. The results show that under the presence of hydrogen, it can reduce the resistance of dislocation movement, promote the emission of crack-tip dislocations, enlarge the plastic zone at the CT, and reduce the dislocation-free zone. In addition, hydrogen atoms can accumulate at GBs and inside grains to form hydrides, reducing the surface energy of the material and making it easier for nanocracks to nucleate at GBs and inside grains. Moreover, hydrogen can exacerbate the stress concentration at the CT, resulting in an accelerated crack propagation rate. This work provides a reasonable explanation for the microscopic mechanism of hydrogen induced fracture failure of metal materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9
Fig. 10.

REFERENCES

  1. S. P. Lynch, “Mechanisms and Kinetics of Environmentally Assisted Cracking: Current Status, Issues, and Suggestions for Further Work,” Metall. Mater. Trans. A 44 (3), 1209–1229 (2013). https://doi.org/10.1007/s11661-012-1359-2

    Article  CAS  Google Scholar 

  2. L. D. Hirscher, “Metal hydride materials for solid hydrogen storage: A review,” Int. J. Hydrogen Energy 32 (9), 1121–1140 (2007). https://doi.org/10.1016/j.ijhydene.2006.11.022

    Article  CAS  Google Scholar 

  3. G. Wang, Y. Yan, J. Li, et al., “Hydrogen embrittlement assessment of ultra-high strength steel 30CrMnSiNi2,” Corros. Sci. 77, 273–280 (2013). https://doi.org/10.1016/j.corsci.2013.08.013

    Article  CAS  Google Scholar 

  4. M. Wang, E. Akiyama, and K. Tsuzaki, “Determination of the critical hydrogen concentration for delayed fracture of high strength steel by constant load test and numerical calculation,” Corros. Sci. 48 (8), 2189–2202 (2006). https://doi.org/10.1016/j.corsci.2005.07.010

    Article  CAS  Google Scholar 

  5. Xinfeng Li, Jin Zhang, Eiji Akiyama, et al., “Effect of heat treatment on hydrogen-assisted fracture behavior of PH13-8Mo steel,” Corros. Sci. 128, 198–212 (2017). https://doi.org/10.1016/j.corsci.2017.09.018

    Article  ADS  CAS  Google Scholar 

  6. M. Dadfarnia, P. Novak, D. C. Ahn, et al., “Recent advances in the study of structural materials compatibility with hydrogen,” Adv. Mater. 22 (10), 1128–1135 (2010). https://doi.org/10.1002/adma.200904354

    Article  CAS  PubMed  Google Scholar 

  7. A. R. Troiano, “The role of hydrogen and other interstitials in the mechanical behavior of metals,” Metallogr. Microstruct. Anal. 5 (6), 557–569 (2016). https://doi.org/10.1007/s13632-016-0319-4

    Article  Google Scholar 

  8. C. D. Beachem, “A new model for hydrogen-assisted cracking (hydrogen "embrittlement”),” Metall. Trans. 3, 441–455 (1972). https://doi.org/10.1007/BF02642048

    Article  Google Scholar 

  9. S. P. Lynch, “Environmentally assisted cracking: Overview of evidence for an adsorption-induced localised-slip process,” Acta Metall. 36 (10), 2639–2661 (1988). https://doi.org/10.1016/0001-6160(88)90113-7

    Article  CAS  Google Scholar 

  10. M. Nagumo, M. Nakamura, and K. Takai, “Hydrogen thermal desorption relevant to delayed-fracture susceptibility of high-strength steels,” Metall. Mater. Trans. A 32 (2), 339–347 (2001). https://doi.org/10.1007/s11661-001-0265-9

    Article  Google Scholar 

  11. H. K. Birnbaum and P. Sofronis, “Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture,” Mater. Sci. Eng. A 176 (1–2), 191–202 (1994). https://doi.org/10.1016/0921-5093(94)90975-X

    Article  CAS  Google Scholar 

  12. G. Domizzi, G. Anteri, and J. Ovejero-Garcia, “Influence of sulphur content and inclusion distribution on the hydrogen induced blister cracking in pressure vessel and pipeline steels,” Corros. Sci. 43 (2), 325–339 (2001). https://doi.org/10.1016/S0010-938X(00)00084-6

    Article  CAS  Google Scholar 

  13. S. Wang, N. Hashimoto, Y. Wang, et al., “Activation volume and density of mobile dislocations in hydrogen-charged iron,” Acta Mater. 61 (13), 4734–4742 (2013). https://doi.org/10.1016/j.actamat.2013.05.007

    Article  ADS  CAS  Google Scholar 

  14. L. Gang, Q. Zhang, N. Kioussis, et al., “Hydrogen-enhanced local plasticity in aluminum: an ab initio study,” Phys. Rev. Lett. 87 (9), 095501 (2001) https://doi.org/10.1103/PhysRevLett.87.095501

  15. H. W. Liu, “A unified model of environment-assisted cracking,” Acta Mater. 56 (16), 4339–4348 (2008). https://doi.org/10.1016/j.actamat.2008.05.001

    Article  ADS  CAS  Google Scholar 

  16. D. Bahr, D. Field, K. Nibur, et al., “Hydrogen and deformation: Nano- and microindentation studies,” JOM 55, 47–50 (2003). https://doi.org/10.1007/s11837-003-0226-4

    Article  CAS  Google Scholar 

  17. K. A. Nibur, D. F. Bahr, and B. P. Somerday, “Hydrogen effects on dislocation activity in austenitic stainless steel,” Acta Mater. 54 (10), 2677-2684 (2006). https://doi.org/10.1016/j.actamat.2006.02.007

    Article  ADS  CAS  Google Scholar 

  18. S. M. Ohr, “An electron microscope study of crack tip deformation and its impact on the dislocation theory of fracture,” Mater. Sci. Eng. 72 (1), 1–35 (1985). https://doi.org/10.1016/0025-5416(85)90064-3

    Article  CAS  Google Scholar 

  19. S. Kobayashi and M. S. Ohr, “Insitu observations of the formation of plastic zone ahead of a crack tip in copper,” Scr. Metall. 15 (3), 343–348 (1981). https://doi.org/10.1016/0036-9748(81)90357-4

    Article  CAS  Google Scholar 

  20. J. Zhang, Y. Sheng, H. Yang, et al., “Crystal crack dislocation model in the hydrogen environment,” Eng. Fract. Mech. 270, 108587 (2022). https://doi.org/10.1016/j.engfracmech.2022.108587

  21. S. Lynch, “Hydrogen embrittlement (HE) phenomena and mechanisms,” Stress Corros. Cracking 30 (3–4), 90–130 (2011).

  22. P. Novak, R. Yuan, B. P. Somerday, et al., “A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel,” J. Mech. Phys. Solids 58 (2), 206–226 (2010). https://doi.org/10.1016/j.jmps.2009.10.005

    Article  ADS  CAS  Google Scholar 

  23. G. Xin, “Displacement burst and hydrogen effect during loading and holding in nanoindentation of an iron single crystal,” Scr. Mater. 53 (11), 1315–1320 (2005). https://doi.org/10.1016/j.scriptamat.2005.06.042

    Article  CAS  Google Scholar 

  24. L. Xiaobing, G. Ming, L. Haoze, et al., “Effect of residual hydrogen content on the tensile properties and crack propagation behavior of a type 316 stainless steel,” Int. J. Hydrogen Energy 44 (45), 25054–25063 (2019). https://doi.org/10.1016/j.ijhydene.2019.07.131

    Article  CAS  Google Scholar 

  25. Y. Ogawa, D. Birenis, H. Matsunaga, et al. “Hydrogen-assisted fatigue crack propagation in a pure BCC iron. Part I: Intergranular crack propagation at relatively low stress intensities,” MATEC Web Conf. 165, 03011 (2018). https://doi.org/10.1051/matecconf/201816503011

  26. A. Tehranchi and W. A. Curtin, “Atomistic study of hydrogen embrittlement of grain boundaries in nickel: I. Fracture,” J. Mech. Phys. Solids 101, 150–165 (2017). https://doi.org/10.1016/j.jmps.2017.01.020

    Article  ADS  CAS  Google Scholar 

  27. G. Zhou, F. Zhou, X. Zhao, et al., “Molecular dynamics simulation of hydrogen enhancing dislocation emission,” Sci. China Ser. E-Technol. Sci. 41, 176–181 (1998). https://doi.org/10.1007/BF02919680

    Article  CAS  Google Scholar 

  28. G. P. Cherepanov, et al., “Mechanics of Brittle Fracture,” J. Appl. Mech. 49 (4), 932 (1982). https://doi.org/10.1115/1.3162675

    Article  ADS  Google Scholar 

  29. M. S. Wu and H. Zhou, “An energy analysis of triple junction crack nucleation due to the wedging action of grain boundary dislocations,” Int. J. Fract. 78 (2), 165–191(1996). https://doi.org/10.1007/BF00034524

    Article  Google Scholar 

  30. F. Wang, C. Wang, “First-principles investigation of hydrogen embrittlement in polycrystalline Ni{3 Al. Phys. Rev. B 57 (1), 289–295 (1998). https://doi.org/10.1103/PhysRevB.57.289

    Article  ADS  CAS  Google Scholar 

  31. D. A. Hills, P. A. Kelly, D. N. Dai, et al., Solution of Crack Problems: the Distributed Dislocation Technique (Springer Sci. Bus. Media, 2013).

    Google Scholar 

  32. S. Damelin, “Numerical solution of singular integral equations,” in Proc. of Fourth Int. Conf. on Dynamic Systems and Applications, 2003, Morehouse College, Atlanta, GA, USA (2003).

  33. I. A. Ovid’ko, A.G. Sheinerman, and E. C. Aifantis, “Stress-driven migration of grain boundaries and fracture processes in nanocrystalline ceramics and metals,” Acta Mater. 56 (12), 2718–2727 (2008). https://doi.org/10.1016/j.actamat.2008.02.004

    Article  ADS  CAS  Google Scholar 

  34. S. M. Ohr, “An electron microscope study of crack tip deformation and its impact on the dislocation theory of fracture,” Mater. Sci. Eng. 72 (1), 1–35(1985). https://doi.org/10.1016/0025-5416(85)90064-3

    Article  CAS  Google Scholar 

  35. S. Lu, B. Zhang, X. Li, et al., “Grain boundary effect on nanoindentation: A multiscale discrete dislocation dynamics model,” J. Mech. Phys. Solids 126, 117–135 (2019). https://doi.org/10.1016/j.jmps.2019.02.003

    Article  ADS  MathSciNet  CAS  Google Scholar 

  36. R. J. Nuismer, “An energy release rate criterion for mixed mode fracture,” Int. J. Fract. 11, 245–250 (1975).

    Article  Google Scholar 

  37. X. Li, A. G. Sheinerman, H. Yang, et al., “Theoretical modeling of toughening mechanisms in the CrMnFeCoNi high-entropy alloy at room temperature,” Int. J. Plast. 154, 103304 (2022). https://doi.org/10.1016/j.ijplas.2022.103304

  38. M. Yamaguchi, K. I. Ebihara, M. Itakura, et al., “First-principles calculation of multiple hydrogen segregation along aluminum grain boundaries,” Comput. Mater. Sci. 156, 368–375 (2019). https://doi.org/10.1016/j.commatsci.2018.10.015

    Article  CAS  Google Scholar 

  39. Y. Y. Huang, Y. C. Zhou, and Y. Pan, “Effects of hydrogen adsorption on the surface-energy anisotropy of nickel,” Phys. B 405 (5), 1335–1338 (2010). https://doi.org/10.1016/j.physb.2009.11.082

    Article  ADS  CAS  Google Scholar 

  40. G. Hasson, C. Goux,” Interfacial energies of tilt boundaries in aluminium. Experimental and theoretical determination,” Scr. Metall. 5, 889–894 (1971).

    Article  CAS  Google Scholar 

  41. S. V. Bobylev, A. K. Mukherjee, I. A. Ovid’ko, et al., “Effects of intergrain sliding on crack growth in nanocrystalline materials.” Int. J. Plast. 26 (11), 1629–1644 (2010). https://doi.org/10.1016/j.ijplas.2010.03.001

    Article  CAS  Google Scholar 

  42. S. Hu, J. Zhou, S. Zhang, et al., “Special fracture behavior of nanocrystalline metals driven by hydrogen,” Mater. Sci. Eng. A 577, 105–113(2013). https://doi.org/10.1016/j.msea.2013.04.019

    Article  CAS  Google Scholar 

  43. C. E. Carlton and P. J. Ferreira, “What is behind the inverse Hall–Petch effect in nanocrystalline materials?” Acta Mater. 55 (11), 3749–3756 (2007). https://doi.org/10.1016/j.actamat.2007.02.021

    Article  ADS  CAS  Google Scholar 

  44. Ha Kuanfu, Basis of Fracture Physics (The Press of Science, Beijing, 2000).

  45. X. J. Wu, A. K. Koul, and A. S. Krausz, “A transgranular fatigue crack growth model based on restricted slip reversibility,” Metall. Trans. B 24A (6), 1373–1380; Int. J. Fatigue, 16 (5), 362–363 (1994). https://doi.org/10.1016/0142-1123(94)90301-8

    Article  Google Scholar 

  46. S. Alkan, P. Chowdhury, H. Sehitoglu, et al., “Role of nanotwins on fatigue crack growth resistance – Experiments and theory,” Int. J. Fatigue 84, 28–39 (2016). https://doi.org/10.1016/j.ijfatigue.2015.11.012

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (11472230).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyu Jiang.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, K., Zhang, J., Sun, K. et al. Special Fatigue Fracture Behavior of Nanocrystalline Metals under Hydrogen Conditions. Mech. Solids 58, 2382–2398 (2023). https://doi.org/10.3103/S0025654423601465

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654423601465

Keywords:

Navigation