Skip to main content
Log in

On Resonance Values of Parameters in the Problem of Stability of Lagrange Solutions in a Restricted Three-Body Problem Close to a Circle

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The restricted problem of three bodies (material points) moving under the action of gravitational attraction according to Newton’s law is considered. The orbits of the main attracting bodies are considered to be ellipses with a small eccentricity, while a passively gravitating body can perform arbitrary spatial motion near the triangular libration point. For the Hamiltonian function corresponding to such a motion, the structure of the normal form is found in the case of third-order resonances. In the planar restricted three-body problem, the equations are derived up to the second degree of eccentricity for resonance curves for all resonances up to the sixth order inclusive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. L. Euler, “De motu rectilineo trium corporum se mutuo attrahentum,” Novi Comm. Acad. Sci. Imp. Petrop. 11, 144–151 (1767).

    Google Scholar 

  2. J. L. Lagrange, “Essai sur le problème des trois corps,” in Oeuvres De Lagrange (Gauthier Villars, Paris, 1873), Vol. 6, pp. 229–324.

    Google Scholar 

  3. A. M. Lyapunov, “On motion stability in one particular case of the three-body problem,” in Collection of Scientific Works (USSR Acad. Sci., Leningrad, Moscow, 1956), Vol. 1, pp. 327–401 [in Russian].

    Google Scholar 

  4. J. M. A. Danby, “Stability of the triangular points in the elliptic restricted problem of three bodies,” Astron. J. 69 (2), 165–172 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  5. G. E. O. Giacaglia, “Characteristics exponents at L4 and L5 in the elliptic restricted problem of three bodies,” Celest. Mech. Dyn. Astron. 4 (3/4), 468–489 (1971).

    Article  MathSciNet  Google Scholar 

  6. A. H. Nayfeh and A. A. Kamel, “Stability of the triangular points in the elliptic restricted problem of three bodies,” AIAA J. 8 (2), 221–223 (1970).

    Article  ADS  Google Scholar 

  7. G. N. Duboshin, Celestial Mechanics: Analytical and Qualitative Methods (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  8. A. P. Markeev, Libration Points in Celestial Mechanics and Cosmodynamics (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  9. M. G. Yumagulov and O. N. Belikova, “Bifurcation of 4π-periodic solutions of the planar, restricted, elliptical three-body problem,” Astron. Rep. 86 (2), 148–152 (2009).

    Article  ADS  Google Scholar 

  10. T. Kovacs, “Stability chart of the triangular points in the elliptic restricted problem of three bodies,” Mon. Not. R. Astron. Soc. 430 (4), 2755–2760 (2013).

    Article  ADS  CAS  Google Scholar 

  11. N. R. Isanbaeva, “ How to create areas boundaries of triangular libration points for flat limited elliptic three-body problem,” Vestn. Bashk. Univ., Mat. Mekh. 22 (1), 5–9 (2017).

    Google Scholar 

  12. A. P. Markeev, “On the stability of Lagrange dolutions in the spatial near-circular restricted three-body problem,” Mech. Solids 56 (8), 1541–1549 (2021).

    Article  ADS  Google Scholar 

  13. A. P. Markeev, “On the metric stability and the Nekhoroshev estimate of the velocity of Arnold diffusion in a special case of the three-body problem” Regular Chaotic Dyn. 26 (4), 321–330 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Kononenko, “Libration points of the Earth-Moon system,” Aviats. Kosmonavt., No. 5, 71–73 (1968).

  15. N. F. Averkiev, S. A. Vas’kov, and V. V. Salov, “Ballistic construction of communication spacecraft systems and passive radar of the lunar surface,” Izv. Vyssh. Uchebn. Zaved., Priborostroen. 51 (12), 66–72 (2008).

    Google Scholar 

  16. F. Salazar, O. Winter, E. Macau, J. Masdemont, and G. Gomez, “Natural configuration for formation flying around triangular libration points for the elliptic and the bicircular problem in the Earth–Moon system (IAC-14-C1. 1. 13. X25737),” in Proc. 65th Int. Astronomical Congress (Toronto, Sept. 29–Oct. 3, 2014).

  17. A. P. Markeev, “On normal coordinates in the vicinity of the Lagrangian libration points of the restricted elliptic three-body problem,” Vestn. Udmurt. Univ., Mat., Mekh., Komp’yut. Nauki 30 (4), 657– 671 (2020).

    Article  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct thisparticular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Markeev.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Translated by M. Shmatikov

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

APPENDIX

APPENDIX

1.1 A1. On Third-Order Resonances

We now list third-order resonances and display the values of \({{\omega }_{1}},{{\omega }_{2}},{{\mu }^{{(0)}}}\), and μ(2), which correspond to them.

$$\begin{gathered} 1)\;\;3{{\lambda }_{2}} = - 1,\quad {{\omega }_{1}} = \frac{{2\sqrt 2 }}{3},\quad {{\omega }_{2}} = \frac{1}{3}, \\ {{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {6177} }}{{162}} = 0.0148525130...,\quad {{\mu }^{{(2)}}} = - \frac{{304\sqrt {6177} }}{{277\,965}} = - 0.0859552225...; \\ \end{gathered} $$
(A1.1)
$$\begin{gathered} 2)\;\;{{\lambda }_{1}} + 2{{\lambda }_{2}} = 0,\quad {{\omega }_{1}} = \frac{{2\sqrt 5 }}{5},\quad {{\omega }_{2}} = \frac{{\sqrt 5 }}{5}, \\ {{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {1833} }}{{90}} = 0.0242938971...,\quad {{\mu }^{{(2)}}} = - \frac{{184\sqrt {1833} }}{{27\,495}} = - 0.2865136593...; \\ \end{gathered} $$
(A1.2)
$$\begin{gathered} 3)\;\;2{{\lambda }_{1}} + {{\lambda }_{2}} = 1,\quad {{\omega }_{1}} = \frac{4}{5},\quad {{\omega }_{2}} = \frac{3}{5}, \\ {{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {4857} }}{{150}} = 0.0353854644...,\quad {{\mu }^{{(2)}}} = \frac{{2336\sqrt {4857} }}{{1\,578\,525}} = 0.1031348463...; \\ \end{gathered} $$
(A1.3)
$$\begin{gathered} 4)\;\;{{\lambda }_{1}} - 2{{\lambda }_{2}} = 2,\quad {{\omega }_{1}} = \frac{4}{5},\quad {{\omega }_{2}} = \frac{3}{5}, \\ {{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {4857} }}{{150}} = 0.0353854644...,\quad {{\mu }^{{(2)}}} = \frac{{2272\sqrt {4857} }}{{526\,175}} = 0.3009277022...; \\ \end{gathered} $$
(A1.4)
$$\begin{gathered} 5)\;\;3{{\lambda }_{2}} = - 2,\quad {{\omega }_{1}} = \frac{{\sqrt 5 }}{3},\quad {{\omega }_{2}} = \frac{2}{3}, \\ {{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {5601} }}{{162}} = 0.0380257471...,\quad {{\mu }^{{(2)}}} = \frac{{520\sqrt {5601} }}{{352\,863}} = 0.1102884435.... \\ \end{gathered} $$
(A1.5)

Underlying the studied nonlinear problem is an analysis of the motions set by the normal form of the Hamiltonian function \(H({{q}_{1}},{{q}_{2}},{{q}_{3}},{{p}_{1}},{{p}_{2}},{{p}_{3}},\nu ;\mu ,e)\). The latter can be found using a Brinkhoff transformation close to the identical \({{y}_{j}},{{Y}_{j}} \to {{q}_{j}},{{p}_{j}}(j = 1,2,3)\), which is \(2\pi \)-periodic in \(\nu \) and analytical in e and the newly introduced canonically conjugated variables \({{q}_{j}},{{p}_{j}}.\)

It should be noted that the variable \({{{v}}_{3}}\) in the initial function (1.2) is not contained in the \({{\Gamma }_{m}}\) form of the power higher than two, while the variable u3 is only present in even powers. We also take into account that the values \({{\lambda }_{j}}\) \((j = 1,2,)\) from Eqs. (2.3) and (2.4) inside the stability area in the first approximation fulfill the inequality \({\text{0}} < \left| {{{\lambda }_{j}}} \right| < {\text{1}}\). Taking this observation into account, it can be shown, following [8], that the presence of identity resonance \({{\lambda }_{{\text{3}}}} = 1\) of the spatial problem does not affect the structure of the normal form of the terms of the third power with respect to the new variables \({{q}_{j}},{{p}_{j}}(j = 1,2,3).\) They will be the same as in the case of a planar elliptic problem.

Setting \({{q}_{j}} = \sqrt {2{{r}_{j}}} \sin {{\varphi }_{j}}\), \({{p}_{j}} = \sqrt {2{{r}_{j}}} \cos {{\varphi }_{j}}\) \((j = 1,2,3)\), we can represent the Hamiltonian function normalized up to terms of the fourth power in \({{q}_{j}},{{p}_{j}}(j = 1,2,3)\), in the form

$$H = {{\lambda }_{1}}{{r}_{1}} + {{\lambda }_{2}}{{r}_{2}} + {{r}_{3}} + {{H}_{3}} + {{H}_{4}} + O\left( {{{{({{r}_{1}} + {{r}_{2}} + {{r}_{3}})}}^{{5{\text{/}}2}}}} \right).$$
(A1.6)

The fourth-power terms \({{H}_{4}}\) can be found using a formula similar to Eq. (3.4) in Chapter 10 of book [8]. We represent the structure of the third-power terms \({{H}_{3}}\) for the third-order resonances (2.15).

$$1)\;\;3{{\lambda }_{2}} = - 1,\quad {{H}_{3}} = r_{2}^{{3/2}}[f_{{0,3}}^{{( - 1)}}\sin (3{{\varphi }_{2}} + \nu ) + g_{{0,3}}^{{( - 1)}}\cos (3{{\varphi }_{2}} + \nu )];$$
$$2)\;\;{{\lambda }_{1}} + 2{{\lambda }_{2}} = 0,\quad {{H}_{3}} = r_{1}^{{1/2}}{{r}_{2}}[f_{{1,2}}^{{(0)}}\sin ({{\varphi }_{1}} + 2{{\varphi }_{2}}) + g_{{1,2}}^{{(0)}}\cos ({{\varphi }_{1}} + 2{{\varphi }_{2}})];$$
$$3)\;\;2{{\lambda }_{1}} + {{\lambda }_{2}} = 1,\quad {{H}_{3}} = {{r}_{1}}r_{2}^{{1/2}}[f_{{2,1}}^{{(1)}}\sin (2{{\varphi }_{1}} + {{\varphi }_{2}} - \nu ) + g_{{2,1}}^{{(1)}}\cos (2{{\varphi }_{1}} + {{\varphi }_{2}} - \nu )];$$
$$4)\;\;{{\lambda }_{1}} - 2{{\lambda }_{2}} = 2,\quad {{H}_{3}} = r_{1}^{{1/2}}{{r}_{2}}[f_{{1, - 2}}^{{(2)}}\sin ({{\varphi }_{1}} - 2{{\varphi }_{2}} - 2\nu ) + g_{{1, - 2}}^{{(2)}}\cos ({{\varphi }_{1}} - 2{{\varphi }_{2}} - 2\nu )];$$
$$5)\;\;3{{\lambda }_{2}} = - 2,\quad {{H}_{3}} = r_{2}^{{3/2}}[f_{{0,3}}^{{( - 2)}}\sin (3{{\varphi }_{2}} + 2\nu ) + g_{{0,3}}^{{( - 2)}}\cos (3{{\varphi }_{2}} + 2\nu )].$$

In the formulas for \({{H}_{3}}\), quantities \(f_{{{{s}_{1}},{{s}_{2}}}}^{{(n)}}\) and \(g_{{{{s}_{1}},{{s}_{2}}}}^{{(n)}}\) are functions of \(\mu \) and e of the order of \({{e}^{{\left| n \right|}}}\).

1.2 A2. Fourth-order resonances

$$(1)\;\;4{{\lambda }_{2}} = - 1,\quad {{\omega }_{1}} = \frac{{\sqrt {15} }}{4},\quad {{\omega }_{2}} = \frac{1}{4},$$
(A2.1)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {139} }}{{24}} = 0.0087572448...,\quad {{\mu }^{{(2)}}} = - \frac{{265\sqrt {139} }}{{80\,064}} = - 0.0390225809...,$$
$$(2)\;\;{{\lambda }_{1}} + 3{{\lambda }_{2}} = 0,\quad {{\omega }_{1}} = \frac{{3\sqrt {10} }}{{10}},\quad {{\omega }_{2}} = \frac{{\sqrt {10} }}{{10}}$$
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {213} }}{{30}} = 0.0135160160...,\quad {{\mu }^{{(2)}}} = - \frac{{62\sqrt {213} }}{{13\,845}} = - 0.0653564615...,$$
$$(3)\;\;{{\lambda }_{1}} - 3{{\lambda }_{2}} = 2,\quad {{\omega }_{1}} = \frac{1}{5} + \frac{{3\sqrt 6 }}{{10}},\quad {{\omega }_{2}} = \frac{3}{5} - \frac{{\sqrt 6 }}{{10}}$$
(A2.3)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {5101 + 64\sqrt 6 } }}{{150}} = 0.0165969087...,$$
$${{\mu }^{{(2)}}} = \frac{{2(8456 - 12\,841\sqrt 6 )\sqrt {41\,593(5101 - 64\sqrt 6 )} }}{{5\,381\,094\,375}} = - 0.12257646673...;$$
$$(4)\;\;2{{\lambda }_{1}} + 2{{\lambda }_{2}} = 1,\quad {{\omega }_{1}} = \frac{1}{4} + \frac{{\sqrt 7 }}{4},\quad {{\omega }_{2}} = - \frac{1}{4} + \frac{{\sqrt 7 }}{4},$$
(A2.4)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {33} }}{{12}} = 0.0212864461...,\quad {{\mu }^{{(2)}}} = - \frac{{25\sqrt {33} }}{{1056}} = - 0.1359981687...;$$
$$(5)\;\;3{{\lambda }_{1}} + {{\lambda }_{2}} = 2,\quad {{\omega }_{1}} = \frac{3}{5} + \frac{{\sqrt 6 }}{{10}},\quad {{\omega }_{2}} = - \frac{1}{5} + \frac{{3\sqrt 6 }}{{10}},$$
(A2.5)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {5101 - 64\sqrt 6 } }}{{150}} = 0.0312317484...,$$
$${{\mu }^{{(2)}}} = \frac{{2(8456 + 12\,841\sqrt 6 )\sqrt {41\,593(5101 + 64\sqrt 6 )} }}{{5\,381\,094\,375}} = 0.2193566513...;$$
$$(6)\;\;3{{\lambda }_{1}} - {{\lambda }_{2}} = 3,\quad {{\omega }_{1}} = \frac{4}{5},\quad {{\omega }_{2}} = \frac{3}{5},$$
(A2.6)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {4857} }}{{150}} = 0.0353854644...,\quad {{\mu }^{{(2)}}} = - \frac{{2144\sqrt {4857} }}{{1\,578\,525}} = - 0.0946580096...;$$
$$(7)\;\;{{\lambda }_{1}} + 3{{\lambda }_{2}} = - 1,\quad {{\omega }_{1}} = \frac{4}{5},\quad {{\omega }_{2}} = \frac{3}{5},$$
(A2.7)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {4857} }}{{150}} = 0.0353854644...,\quad {{\mu }^{{(2)}}} = \frac{{11\,488\sqrt {4857} }}{{4\,735\,575}} = 0.1690657982...;$$
$$(8)\;\;4{{\lambda }_{1}} = 3,\quad {{\omega }_{1}} = \frac{3}{4},\quad {{\omega }_{2}} = \frac{{\sqrt 7 }}{4},$$
(A2.8)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {123} }}{{24}} = 0.0378943122...,\quad {{\mu }^{{(2)}}} = \frac{{203\sqrt {123} }}{{39\,360}} = 0.0571996674....$$

1.3 A3. Fifth-order resonances

$$(1)\;\;5{{\lambda }_{2}} = - 1,\quad {{\omega }_{1}} = \frac{{2\sqrt 6 }}{5},\quad {{\omega }_{2}} = \frac{1}{5}$$
(A3.1)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {5497} }}{{150}} = 0.0057216258...,\quad {{\mu }^{{(2)}}} = - \frac{{2704\sqrt {5497} }}{{8\,657\,775}} = - 0.0231559850...$$
$$(2)\;\;{{\lambda }_{1}} + 4{{\lambda }_{2}} = 0,\quad {{\omega }_{1}} = \frac{{4\sqrt {17} }}{{17}},\quad {{\omega }_{2}} = \frac{{\sqrt {17} }}{{17}};$$
(A3.2)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {22\,641} }}{{306}} = 0.0082703726...,\quad {{\mu }^{{(2)}}} = - \frac{{9376\sqrt {22\,641} }}{{41\,500\,953}} = - 0.0339943961...$$
$$(3)\;\;{{\lambda }_{1}} - 4{{\lambda }_{2}} = 2,\quad {{\omega }_{1}} = \frac{2}{{17}} + \frac{{4\sqrt {13} }}{{17}},\quad {{\omega }_{2}} = \frac{8}{{17}} - \frac{{\sqrt {13} }}{{17}}$$
(A3.3)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {682\,377 + 11\,520\sqrt {13} } }}{{1734}} = 0.0093248318...,$$
$${{\mu }^{{(2)}}} = \frac{{40(2\,262\,155 - 2\,045\,476\sqrt {13} )\sqrt {617\,161(682\,377 - 11\,520\sqrt {13} )} }}{{2\,820\,437\,222\,656\,677}} = - 0.0456022641...;$$
$$(4)\;\;2{{\lambda }_{1}} + 3{{\lambda }_{2}} = 1,\quad {{\omega }_{1}} = \frac{2}{{13}} + \frac{{6\sqrt 3 }}{{13}},\quad {{\omega }_{2}} = - \frac{3}{{13}} + \frac{{4\sqrt 3 }}{{13}},$$
(A3.4)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {232\,217 + 7040\sqrt 3 } }}{{1014}} = 0.0124467036...,$$
$${{\mu }^{{(2)}}} = \frac{{80(420 - 1093\sqrt 3 )\sqrt {1\,882\,849(232\,217 - 7040\sqrt 3 )} }}{{1\,451\,953\,357\,803}} = - 0.0522421439...;$$
$$(5)\;\;2{{\lambda }_{1}} - 3{{\lambda }_{2}} = 3,\quad {{\omega }_{1}} = \frac{{12}}{{13}},\quad {{\omega }_{2}} = \frac{5}{{13}},$$
(A3.5)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {237\,849} }}{{1014}} = 0.0190358459...,\quad {{\mu }^{{(2)}}} = - \frac{{14\,317\,600\sqrt {237\,849} }}{{34\,207\,205\,331}} = - 0.2041283360...;$$
$$(6)\;\;3{{\lambda }_{1}} + 2{{\lambda }_{2}} = 2,\quad {{\omega }_{1}} = \frac{{12}}{{13}},\quad {{\omega }_{2}} = \frac{5}{{13}},$$
(A3.6)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {237\,849} }}{{1014}} = 0.0190358459...,$$
$${{\mu }^{{(2)}}} = - \frac{{18\,200\,800\sqrt {237\,849} }}{{102\,621\,615\,993}} = - 0.0864972485...,$$
$$(7)\;\;5{{\lambda }_{2}} = - 2,\quad {{\omega }_{1}} = \frac{{\sqrt {21} }}{5},\quad {{\omega }_{2}} = \frac{2}{5},$$
(A3.7)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {5177} }}{{150}} = 0.0203241835...,\quad {{\mu }^{{(2)}}} = - \frac{{8456\sqrt {5177} }}{{3\,494\,475}} = - 0.1741093599...;$$
$$(8)\;\;{{\lambda }_{1}} + 4{{\lambda }_{2}} = - 1,\quad {{\omega }_{1}} = \frac{{15}}{{17}},\quad {{\omega }_{2}} = \frac{8}{{17}},$$
(A3.8)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {674\,889} }}{{1734}} = 0.0262305184...,$$
$${{\mu }^{{(2)}}} = - \frac{{28\,476\,800\sqrt {674\,889} }}{{39\,723\,741\,577}} = - 0.5889212320...;$$
$$(9)\;\;4{{\lambda }_{1}} - {{\lambda }_{2}} = 4,\quad {{\omega }_{1}} = \frac{{15}}{{17}},\quad {{\omega }_{2}} = \frac{8}{{17}},$$
(A3.9)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {674\,889} }}{{1734}} = 0.0262305184...,$$
$${{\mu }^{{(2)}}} = \frac{{89\,737\,600\sqrt {674\,889} }}{{119\,171\,224\,731}} = 0.6186132565...;$$
$$(10)\;\;4{{\lambda }_{1}} + {{\lambda }_{2}} = 3,\quad {{\omega }_{1}} = \frac{{12}}{{17}} + \frac{{2\sqrt 2 }}{{17}},\quad {{\omega }_{2}} = - \frac{3}{{17}} + \frac{{8\sqrt 2 }}{{17}},$$
(A3.10)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {5\,986\,833 + 34\,560\sqrt 2 } }}{{5202}} = 0.0277262898...,$$
$${{\mu }^{{(2)}}} = \frac{{80(1\,738\,235 - 24\,462\,756\sqrt 2 )\sqrt {47\,679\,001(5\,986\,833 - 34\,560\sqrt 2 )} }}{{79\,958\,550\,479\,979\,159}} = - 0.5531455483...;$$
$$(11)\;\;{{\lambda }_{1}} - 4{{\lambda }_{2}} = 3,\quad {{\omega }_{1}} = \frac{3}{{17}} + \frac{{8\sqrt 2 }}{{17}},\quad {{\omega }_{2}} = \frac{{12}}{{17}} - \frac{{2\sqrt 2 }}{{17}},$$
(A3.11)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {5\,986\,833 - 34\,560\sqrt 2 } }}{{5202}} = 0.0315662209...,$$
$${{\mu }^{{(2)}}} = \frac{{80(1\,738\,235 + 24\,462\,756\sqrt 2 )\sqrt {47\,679\,001(5\,986\,833 + 34\,560\sqrt 2 )} }}{{79\,958\,550\,479\,979\,159}} = 0.6166855225...;$$
$$(12)\;\;2{{\lambda }_{1}} + 3{{\lambda }_{2}} = 0,\quad {{\omega }_{1}} = \frac{{3\sqrt {13} }}{{13}},\quad {{\omega }_{2}} = \frac{{2\sqrt {13} }}{{13}},$$
(A3.12)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {1329} }}{{78}} = 0.0326224068...,\quad {{\mu }^{{(2)}}} = \frac{{2936\sqrt {1329} }}{{397\,371}} = 0.2693533444...;$$
$$(13)\;\;5{{\lambda }_{1}} = 4,\quad {{\omega }_{1}} = \frac{4}{5},\quad {{\omega }_{2}} = \frac{3}{5},$$
(A3.13)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {4857} }}{{150}} = 0.0353854644...,\quad {{\mu }^{{(2)}}} = \frac{{2528\sqrt {4857} }}{{4\,735\,575}} = 0.0372038943...;$$
$$(14)\;\;5{{\lambda }_{2}} = - 3,\quad {{\omega }_{1}} = \frac{4}{5},\quad {{\omega }_{2}} = \frac{3}{5},$$
(A3.14)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {4857} }}{{150}} = 0.0353854644...,\quad {{\mu }^{{(2)}}} = \frac{{352\sqrt {4857} }}{{121\,425}} = 0.2020312742...;$$
$$(15)\;\;3{{\lambda }_{1}} + 2{{\lambda }_{2}} = 1,\quad {{\omega }_{1}} = \frac{3}{{13}} + \frac{{4\sqrt 3 }}{{13}},\quad {{\omega }_{2}} = - \frac{2}{{13}} + \frac{{6\sqrt 3 }}{{13}},$$
(A3.15)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {232\,217 - 7040\sqrt 3 } }}{{1014}} = 0.0374097834...,$$
$${{\mu }^{{(2)}}} = \frac{{80(420 + 1093\sqrt 3 )\sqrt {1\,882\,849(232\,217 + 7040\sqrt 3 )} }}{{1\,451\,953\,357\,803}} = 0.0864580524...;$$
$$(16)\;\;{{\lambda }_{1}} + 4{{\lambda }_{2}} = - 2,\quad {{\omega }_{1}} = - \frac{2}{{17}} + \frac{{4\sqrt {13} }}{{17}},\quad {{\omega }_{2}} = \frac{8}{{17}} + \frac{{\sqrt {13} }}{{17}},$$
(A3.16)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {682\,377 - 11\,520\sqrt {13} } }}{{1734}} = 0.0383359381...,$$
$${{\mu }^{{(2)}}} = \frac{{40(2\,262\,155 + 2\,045\,476\sqrt {13} )\sqrt {617\,161(682\,377 + 11\,520\sqrt {13} )} }}{{2\,820\,437\,222\,656\,677}} = 0.0913561732....;$$

1.4 A4. Sixth-order resonances

$$(1)\;\;6{{\lambda }_{2}} = - 1,\quad {{\omega }_{1}} = \frac{{\sqrt {35} }}{6},\quad {{\omega }_{2}} = \frac{1}{6},$$
(A4.1)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {1614} }}{{81}} = 0.0040170511...,\quad {{\mu }^{{(2)}}} = - \frac{{1435\sqrt {1614} }}{{3\,718\,656}} = - 0.0155030683...;$$
$$(2)\;\;{{\lambda }_{1}} + 5{{\lambda }_{2}} = 0,\quad {{\omega }_{1}} = \frac{{5\sqrt {26} }}{{26}},\quad {{\omega }_{2}} = \frac{{\sqrt {26} }}{{26}},$$
(A4.2)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {13\,389} }}{{234}} = 0.0055092029...,\quad {{\mu }^{{(2)}}} = - \frac{{3550\sqrt {13\,389} }}{{19\,320\,327}} = - 0.0212612087...;$$
$$(3)\;\;{{\lambda }_{1}} - 5{{\lambda }_{2}} = 2,\quad {{\omega }_{1}} = \frac{1}{{13}} + \frac{{5\sqrt {22} }}{{26}},\quad {{\omega }_{2}} = \frac{5}{{13}} - \frac{{\sqrt {22} }}{{26}},$$
(A4.3)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {237\,453 + 2880\sqrt {22} } }}{{1014}} = 0.0059561391...,$$
$${{\mu }^{{(2)}}} = \frac{{2(25\,504 - 6583\sqrt {22} )\sqrt {218\,641(237\,453 - 2880\sqrt {22} )} }}{{93\,669\,084\,015}} = - 0.0253855879...;$$
$$(4)\;\;2{{\lambda }_{1}} + 4{{\lambda }_{2}} = 1,\quad {{\omega }_{1}} = \frac{1}{{10}} + \frac{{\sqrt {19} }}{5},\quad {{\omega }_{2}} = - \frac{1}{5} + \frac{{\sqrt {19} }}{{10}},$$
(A4.4)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {1284 + 18\sqrt {19} } }}{{75}} = 0.0078464230...,$$
$${{\mu }^{{(2)}}} = \frac{{(175\,427 - 71\,171\sqrt {19} )\sqrt {73(1284 - 18\sqrt {19} )} }}{{1\,331\,520\,000}} = - 0.0300327459...;$$
$$(5)\;\;2{{\lambda }_{1}} - 4{{\lambda }_{2}} = 3,\quad {{\omega }_{1}} = \frac{3}{{10}} + \frac{{\sqrt {11} }}{5},\quad {{\omega }_{2}} = \frac{3}{5} - \frac{{\sqrt {11} }}{{10}},$$
(A4.5)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {11\,976 + 54\sqrt {11} } }}{{225}} = 0.0099992897...,$$
$${{\mu }^{{(2)}}} = \frac{{(2133\sqrt {11} - 122\,573)\sqrt {6373(11\,976 - 54\sqrt {11} )} }}{{18\,354\,240\,000}} = - 0.0545627701...;$$
$$(6)\;\;3{{\lambda }_{1}} + 3{{\lambda }_{2}} = 2,\quad {{\omega }_{1}} = \frac{1}{3} + \frac{{\sqrt {14} }}{6},\quad {{\omega }_{2}} = - \frac{1}{3} + \frac{{\sqrt {14} }}{6},$$
(A4.6)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {6261} }}{{162}} = 0.0115649319...,\quad {{\mu }^{{(2)}}} = - \frac{{400\sqrt {6261} }}{{732\,537}} = - 0.0432068174...;$$
$$(7)\;\;4{{\lambda }_{1}} + 2{{\lambda }_{2}} = 3,\quad {{\omega }_{1}} = \frac{3}{5} + \frac{{\sqrt {11} }}{{10}},\quad {{\omega }_{2}} = - \frac{3}{{10}} + \frac{{\sqrt {11} }}{5},$$
(A4.7)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {11\,976 - 54\sqrt {11} } }}{{225}} = 0.0172731312...,$$
$${{\mu }^{{(2)}}} = - \frac{{(122\,573 + 2133\sqrt {11} )\sqrt {6373(11\,976 + 54\sqrt {11} )} }}{{18\,354\,240\,000}} = - 0.06216965547...;$$
$$(8)\;\;{{\lambda }_{1}} + 5{{\lambda }_{2}} = - 1,\quad {{\omega }_{1}} = \frac{{12}}{{13}},\quad {{\omega }_{2}} = \frac{5}{{13}},$$
(A4.8)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {237\,849} }}{{1014}} = 0.0190358459...,$$
$${{\mu }^{{(2)}}} = - \frac{{3\,122\,400\sqrt {237\,849} }}{{11\,402\,401\,777}} = - 0.1335496835...;$$
$$(9)\;\;5{{\lambda }_{1}} - {{\lambda }_{2}} = 5,\quad {{\omega }_{1}} = \frac{{12}}{{13}},\quad {{\omega }_{2}} = \frac{5}{{13}},$$
(A4.9)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {237\,849} }}{{1014}} = 0.0190358459...,\quad {{\mu }^{{(2)}}} = \frac{{10\,434\,400\sqrt {237\,849} }}{{34\,207\,205\,331}} = 0.1487649263...;$$
$$(10)\;\;{{\lambda }_{1}} - 5{{\lambda }_{2}} = 3,\quad {{\omega }_{1}} = \frac{3}{{26}} + \frac{{5\sqrt {17} }}{{26}},\quad {{\omega }_{2}} = \frac{{15}}{{26}} - \frac{{\sqrt {17} }}{{26}},$$
(A4.10)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {2\,044\,257 + 17\,280\sqrt {17} } }}{{3042}} = 0.0218680746...,$$
$${{\mu }^{{(2)}}} = - \frac{{16(20\,451\,221 + 8\,794\,683\sqrt {17} )\sqrt {16\,237\,801(2\,044\,257 - 17\,280\sqrt {17} )} }}{{20\,932\,161\,203\,883\,735}} = - 0.2453657301...;$$
$$(11)\;\;3{{\lambda }_{1}} - 3{{\lambda }_{2}} = 4,\quad {{\omega }_{1}} = \frac{2}{3} + \frac{{\sqrt 2 }}{6},\quad {{\omega }_{2}} = \frac{2}{3} - \frac{{\sqrt 2 }}{6},$$
(A4.11)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {5973} }}{{162}} = 0.0229309496...,\quad {{\mu }^{{(2)}}} = - \frac{{17\,150\sqrt {5973} }}{{2\,526\,579}} = - 0.5245990498...;$$
$$(12)\;\;5{{\lambda }_{1}} + {{\lambda }_{2}} = 4,\quad {{\omega }_{1}} = \frac{{10}}{{13}} + \frac{{\sqrt {10} }}{{26}},\quad {{\omega }_{2}} = - \frac{2}{{13}} + \frac{{5\sqrt {10} }}{{26}},$$
(A4.12)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {226\,029 + 1920\sqrt {10} } }}{{1014}} = 0.0248834579...,$$
$${{\mu }^{{(2)}}} = \frac{{10(10\,703 - 26\,746\sqrt {10} )\sqrt {198\,609(226\,029 - 1920\sqrt {10} )} }}{{1\,412\,445\,440\,601}} = - 0.1093191450...;$$
$$(13)\;\;3{{\lambda }_{1}} + 3{{\lambda }_{2}} = 1,\quad {{\omega }_{1}} = \frac{1}{6} + \frac{{\sqrt {17} }}{6},\quad {{\omega }_{2}} = - \frac{1}{6} + \frac{{17}}{6},$$
(A4.13)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {5793} }}{{162}} = 0.0301743214...,\quad {{\mu }^{{(2)}}} = \frac{{5600\sqrt {5793} }}{{677\,781}} = 0.6288548301...;$$
$$(14)\;\;6{{\lambda }_{1}} = 5,\quad {{\omega }_{1}} = \frac{5}{6},\quad {{\omega }_{2}} = \frac{{\sqrt {11} }}{6},$$
(A4.14)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {1434} }}{{81}} = 0.0324914511...,\quad {{\mu }^{{(2)}}} = \frac{{4675\sqrt {1434} }}{{6\,607\,872}} = 0.0267913482...;$$
$$(15)\;\;{{\lambda }_{1}} + 5{{\lambda }_{2}} = - 2,\quad {{\omega }_{1}} = - \frac{1}{{13}} + \frac{{5\sqrt {22} }}{{26}},\quad {{\omega }_{2}} = \frac{5}{{13}} + \frac{{\sqrt {22} }}{{26}},$$
(A4.15)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {237\,453 - 2880\sqrt {22} } }}{{1014}} = 0.0333058630...,$$
$${{\mu }^{{(2)}}} = \frac{{2(25\,504 + 6583\sqrt {22} )\sqrt {218\,641(237\,453 + 2880\sqrt {22} )} }}{{93\,669\,084\,015}} = 0.2819913682...;$$
$$(16)\;\;2{{\lambda }_{1}} + 4{{\lambda }_{2}} = - 1,\quad {{\omega }_{1}} = - \frac{1}{{10}} + \frac{{\sqrt {19} }}{5},\quad {{\omega }_{2}} = \frac{1}{5} + \frac{{\sqrt {19} }}{{10}},$$
(A4.16)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {1284 - 18\sqrt {19} } }}{{75}} = 0.0370548736...,$$
$${{\mu }^{{(2)}}} = \frac{{(175\,427 + 71\,171\sqrt {19} )\sqrt {73(1284 - 18\sqrt {19} )} }}{{1\,331\,520\,000}} = 0.1150277940...;$$
$$(17)\;\;{{\lambda }_{1}} - 5{{\lambda }_{2}} = 4,\quad {{\omega }_{1}} = \frac{2}{{13}} + \frac{{5\sqrt {10} }}{{26}},\quad {{\omega }_{2}} = \frac{{10}}{{13}} - \frac{{\sqrt {10} }}{{26}},$$
(A4.17)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {226\,029 - 1920\sqrt {10} } }}{{1014}} = 0.0374791018...,$$
$${{\mu }^{{(2)}}} = \frac{{10(10\,703 + 26\,746\sqrt {10} )\sqrt {198\,609(226\,029 + 1920\sqrt {10} )} }}{{1\,412\,445\,440\,601}} = 0.1448349796...;$$
$$(18)\;\;5{{\lambda }_{1}} + {{\lambda }_{2}} = 3,\quad {{\omega }_{1}} = \frac{{15}}{{26}} + \frac{{\sqrt {17} }}{{26}},\quad {{\omega }_{2}} = - \frac{3}{{26}} + \frac{{5\sqrt {17} }}{{26}},$$
(A4.18)
$${{\mu }^{{(0)}}} = \frac{1}{2} - \frac{{\sqrt {2\,044\,257 - 17\,280\sqrt {17} } }}{{3042}} = 0.0382515946...,$$
$${{\mu }^{{(2)}}} = \frac{{16( - 20\,451\,221 + 8\,794\,683\sqrt {17} )\sqrt {16\,237\,801(2\,044\,257 + 17\,280\sqrt {17} )} }}{{20\,932\,161\,203\,883\,735}} = 0.0708293815....;$$

This work was supported by a grant from the Russian Science Foundation (project no. 19-11-00116) at the Moscow Aviation Institute (National Research University)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markeev, A.P. On Resonance Values of Parameters in the Problem of Stability of Lagrange Solutions in a Restricted Three-Body Problem Close to a Circle. Mech. Solids 58, 2531–2543 (2023). https://doi.org/10.3103/S0025654423070142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654423070142

Keywords:

Navigation