Skip to main content
Log in

To the Static Stability of the Cross-Sectional Shape of a Pipeline, Cylindrical Shell, Carbon Nanotube

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

Based on the assumption about the initial deformed shape of the cross section of the pipeline, cylindrical shell, carbon nanotube (CNT) without initial stresses, the critical pressures inside and outside these structural elements are determined. The static interaction of instabilities under the action of the above factors is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. A. Il’gamov, “Interactions between the Euler, Helmholtz, and Rayleigh instabilities,” Tech. Phys. 63, 155–159 (2018). https://doi.org/10.1134/S1063784218020160

    Article  Google Scholar 

  2. I. A. Dyachenko and A. A. Mironov, “Analytical and numerical studies of free vibrationsof cylindrical shell with acoustic medium,” Probl. Prochn. Plastichn. 83 (1), 35–48 (2021). https://doi.org/10.32326/1814-9146-2021-83-1-35-48

    Article  Google Scholar 

  3. G. S. Leizerovich and N. A. Taranukha, “Nonobvious features of dynamics of circular cylindrical shells,” Mech. Solids 43 (2), 246–253 (2008). https://doi.org/10.3103/S0025654408020106

    Article  ADS  Google Scholar 

  4. A. Rawat, V. Matsagar, and A. Nagpal, “Finite element analysis of thin circular cylindrical shells,” Proc. Indian Nat. Sci. Acad. 82 (2), 349–355 (2016). https://doi.org/10.16943/ptinsa/2016/48426

    Article  Google Scholar 

  5. A. Farshidianfar and P. Oliazadeh, “Free vibration analysis of circular cylindrical shells: comparison of different shell theories,” Int. J. Mech. Appl. 2 (5), 74–80 (2012). https://doi.org/10.5923/j.mechanics.20120205.04

    Article  Google Scholar 

  6. H. H. Bleich and M.L. Baron, “Free and forced vibration of an infinitely long cylindrical shell in an infinite acoustic medium,” J. Appl. Mech. Trans. ASME 21 (2), 167–177 (1954).

    Article  ADS  MATH  Google Scholar 

  7. A. D. O’Connell, M. Hofheinz, M. Ansmann, et al., “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010). https://doi.org/10.1038/nature08967

    Article  ADS  Google Scholar 

  8. T. P. Burg, M. Godin, S. M. Knudsen, et al., “Weighing of biomolecules, single cells and single nanopar- ticles in fluid,” Nature 446, 1066–1069 (2007). https://doi.org/10.1038/nature05741

    Article  ADS  Google Scholar 

  9. S. Husale, H. H. J. Persson, and O. Sahin, “DNA nanomechanics allows direct digital detection of comple- mentary DNA and microRNA targets,” Nature 462, 1075–1078 (2009). https://doi.org/10.1038/nature08626

    Article  ADS  Google Scholar 

  10. Y. M. Sirenko, M. A. Stroscio, and K.W. Kim, “Elastic vibrations of microtubules in a fluid,” Phys. Rev. 53 (1), 1003–1010 (1996).

    ADS  Google Scholar 

  11. B. D. Annin, V. V. Alekhin, A. V. Babichev, et al., “Molecular mechanics method applied to problems of stability and natural vibrations of single-layer carbon nanotubes,” Mech. Solids 47, 544–559 (2012). https://doi.org/10.3103/S0025654412050081

    Article  ADS  Google Scholar 

  12. Y. Chen, M. Alba, T. Tieu, et al., “Engineering micro–nanomaterials for biomedical translation,” Adv. NanoBiomed Res., No. 1, 2100002 (2021). https://doi.org/10.1002/anbr.202100002

  13. M. A. Il’gamov, “Influence of the ambient pressure on thin plate and film bending,” Dokl. Phys. 62 (10), 461–464 (2017). https://doi.org/10.1134/S1028335817100020

    Article  ADS  Google Scholar 

  14. M. A. Il’gamov, “The influence of surface effects on bending and vibrations of nanofilms,” Phys. Solid State 61, 1779–1784 (2019). https://doi.org/10.1134/S1063783419100172

    Article  ADS  MathSciNet  Google Scholar 

  15. M. A. Ilgamov and A. G. Khakimov, “Influence of pressure on the frequency spectrum of micro and nanoresonators on hinged supports,” J. Appl. Comput. Mech. 7 (2), 977–983 (2021). https://doi.org/10.22055/JACM.2021.36470.2848

    Article  Google Scholar 

  16. S. V. Dmitriev, I. R. Sunagatova, M. A. Ilgamov, et al., “Natural frequencies of bending vibrations of carbon nanotubes,” Tech. Phys. 67, 7–13 (2022). https://doi.org/10.1134/S1063784222010042

    Article  Google Scholar 

  17. S. V. Dmitriev, A. S. Semenov, A. V. Savin, et al., “Rotobreather in a carbon nanotube bundle,” J. Micromech. Molecular Phys. 5 (3), 2050010 (2021). https://doi.org/10.1142/S2424913020500101

  18. A. V. Eletskii, “Mechanical properties of carbon nanostructures and related materials,” Phys. Usp. 50 (3), 225–261 (2007). https://doi.org/10.1070/PU2007v050n03ABEH006188

    Article  ADS  Google Scholar 

  19. V. M. Harik, “Ranges of applicability for the continuum beam model in the mechanics of carbon nanotubes and nanorods,” Solid State Commun. 120, 331–335 (2001). https://doi.org/10.1016/S0038-1098(01)00383-0

    Article  ADS  Google Scholar 

  20. D. Qian, G. J. Wagner, W. K Lin., et al., “Mechanics of carbon nanotubes,” Appl. Mech. Rev. 55 (6), 495–532 (2002). https://doi.org/10.1115/1.1490129

    Article  ADS  Google Scholar 

  21. S. P. Timoshenko, D. H. Young, and W. Weaver, Vibration Problems in Engineering (John Wiley & Sons, New York, 1974).

    Google Scholar 

  22. J. Wu, J. Zang, B. Larade, et al., “Computational design of carbon nanotube electromechanical pressure sensors,” Phys. Rev. B 69, 153406 (2004). https://doi.org/10.1103/PhysRevB.69.153406

  23. K. Bi and H. Hao, “Using pipe-in-pipe systems for subsea pipeline vibration control,” Eng. Struct. 109, 75–84 (2016). https://doi.org/10.1016/j.engstruct.2015.11.018

    Article  Google Scholar 

  24. F. Davaripou, B. W. T. Quinton, and K. Pike, “Effect of damage progression on the plastic capacity of a subsea pipeline,” Ocean Eng. 234, 109118 (2021). https://doi.org/10.1016/j.oceaneng.2021.109118

  25. A. Cheng and N.-Z. Chen, “Corrosion fatigue crack growth modelling for subsea pipeline steels,” Ocean Eng. 142, 10–19 (2017). https://doi.org/10.1016/j.oceaneng.2017.06.057

    Article  Google Scholar 

Download references

Funding

The study was supported by a grant from the Russian Science Foundation No. 22-21-00578.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Khakimov.

Additional information

Translated by Katuev M.K.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khakimov, A.G. To the Static Stability of the Cross-Sectional Shape of a Pipeline, Cylindrical Shell, Carbon Nanotube. Mech. Solids 58, 78–83 (2023). https://doi.org/10.3103/S0025654422600520

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654422600520

Keywords:

Navigation