Skip to main content
Log in

Abnormal Transmission of Elastic Waves through a Thin Ligament Connecting Two Planar Isotropic Waveguides

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The asymptotics of the transmission and reflection coefficients for a longitudinal wave incoming from infinity and scattering in a resonator, a thin ligament connecting two trunks of the waveguide (homogeneous isotropic half-strips), is constructed. An unexpected effect was revealed by selecting the size of the ligament (the wave almost completely transmits from one trunk to another at any prescribed frequency from the first interval of the continuous spectrum). In the general situation, the wave is almost completely reflected. Open questions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. N. A. Umov, Equations of Energy Motion for Bodies (Ulrich and Schulze Typography, Odessa, 1874) [in Russian].

    Google Scholar 

  2. I. I. Vorovich and V. A. Babeshko, Dynamical Mixed Problems of Elasticity Theory for Nonclassical Domains (Nauka, Moscow, 1979) [in Russian].

    MATH  Google Scholar 

  3. S. A. Nazarov and B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries (Walter de Gruyter, Berlin, New York, 1994).

    Book  MATH  Google Scholar 

  4. S. A. Nazarov, “Umov–Mandelstam radiation conditions in elastic periodic waveguide,” Mat. Sb. 205 (7), 43–72 (2014).

    MathSciNet  Google Scholar 

  5. O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  6. G. Fichera, Existence Theorems in the Theory of Elasticity. Handbuch der Physic (Springer, Berlin, 1972).

    Google Scholar 

  7. M. Sh. Birman and M. Z. Solomyak, Spectral Theory of Selfadjoint Operators in Hilbert Space (Leningrad Univ., Leningrad) [in Russian].

  8. G. A. Kriegsmann, “Complete transmission through a two-dimensional diffraction grating,” SIAM J. Appl. Math. 65 (1), 24–42 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  9. S. P. Shipman and S. Venakides, “Resonant transmission near nonrobust periodic slab modes,” Phys. Rev. E 71 (2), 026611 (2005).

  10. J. Lin and H. Zhang, “Scattering and field enhancement of a perfect conducting narrow slit,” SIAM J. Appl. Math. 77 (3), 951–976 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Lin and H. Zhang, “Scattering by a periodic array of subwavelength slits I: field enhancement in the diffraction regime,” Multiscale Model. Simul. 16 (2), 922–953 (2018).

    Article  MathSciNet  Google Scholar 

  12. S. A. Nazarov and L. Chesnel, “Anomalies of transmission of acoustic waves in two semi-infinite cylinders connected by thin flattened canal,” Comput. Math. Math. Phys. 61 (4), 646–663 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  13. S. A. Nazarov and L. Chesnel, “Abnormal transition of waves through a thin canal connecting two acoustic waveguides,” Dokl. Phys. 66 (1), 45–50 (2021).

    Article  ADS  Google Scholar 

  14. S. A. Nazarov, “Enforced stability of an eigenvalue in the continuous spectrum of a waveguide with an obstacle,” Comput. Math. Math. Phys. 52 (3), 448–464 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  15. S. A. Nazarov, “Enforced stability of a simple eigenvalue in the continuous spectrum,” Funct. Anal. Appl. 475 (3), 195–209 (2013).

    Article  MATH  Google Scholar 

  16. A.-S. Bonnet-Ben Dhia and S. A. Nazarov, “Obstacles in acoustic waveguides becoming “invisible” at given frequencies,” Acoust Phys. 59 (6), 633–639 (2013).

    Article  ADS  Google Scholar 

  17. L. Chesnel, S. A. Nazarov, and J. Taskinen, “Surface waves in a channel with thin tunnels at the bottom: non-reflecting underwater topography,” Asympt. Anal. 118 (1), 81–122 (2020).

    MathSciNet  MATH  Google Scholar 

  18. W. G. Mazja, S. A. Nasarow, and B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten (Akademie-Verlag, Berlin, 1991).

    Google Scholar 

  19. S. A. Nazarov, Asymptotic Theory of Thin Plates and Rods. Dimension Reduction and Integral Bounds (Nauchnaya kniga, Novosibirsk, 2002) [in Russian].

  20. M. D. Van Dyke, Perturbation Methods in Fluid Mechanics (Academic, New York, 1964).

    MATH  Google Scholar 

  21. A. M. Il’in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems (Am. Math. Soc., Providence, RI, 1992).

    Book  MATH  Google Scholar 

  22. V. A. Kozlov, V. G. Maz’ya, and A. B. Movchan, Asymptotic Analysis of Fields in Multistructures (Clarendon Press, Oxford, 1999).

    MATH  Google Scholar 

  23. S. A. Nazarov, “Asymptotics of solutions to the spectral elasticity problem for a spatial body with a thin coupler,” Sib. Math. J. 53 (3), 274–290 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  24. S. A. Nazarov, “Asymptotics of Eigen-oscillations of a massive elastic body with a thin baffle,” Math. Izv. 77 (1), 87–142 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  25. S. P. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw Hill Book Co., 1951).

    MATH  Google Scholar 

  26. Yu. N. Rabotnov, Mechanics of a Deformable Solid (Nauka, Moscow, 1988) [in Russian].

    MATH  Google Scholar 

  27. S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary-value problems and the algebraic description of their attributes,” Usp. Mat. Nauk 54 (5), 77–142 (1999).

    Google Scholar 

  28. M. M. Vainberg and V. A. Trenogin, Branching Theory for the Solutions of Non-Linear Equations (Nauka, Moscow, 1969) [in Russian].

    MATH  Google Scholar 

  29. S. A. Nazarov, “The Mandelstam energy radiation conditions and the Umov–Poynting vector in elastic waveguides, J. Math. Sci. 195 (5), 676–729 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  30. S. A. Nazarov, “Almost complete transmission of low frequency waves in a locally damaged elastic waveguide,” J. Math. Sci. 244 (3), 451–497 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  31. J. T. Beale, “Scattering frequencies of resonators,” Commun. Pure Appl. Math. 26 (4), 549–563 (1973).

    Article  MATH  Google Scholar 

  32. A. A. Arsen’ev, “The existence of resonance poles and scattering resonances in the case of boundary conditions of the second and third kind,” USSR Comput. Math. Math. Phys. 16 (3), 171–177 (1976).

    Article  MATH  Google Scholar 

  33. R. R. Gadyl’shin, “Characteristic frequencies of bodies with thin spikes. I. Convergence and estimates,” Math. Notes. 54 (6), 1192–1199 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  34. R. R. Gadyl’shin, “On the eigenvalues of a “dumbbell” with a thin handle,” Izv. Math. 69 (2), 265–329 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  35. P. Joly and S. Tordeux, “Matching of asymptotic expansions for wave propagation in media with thin slots I: the asymptotic expansion,” SIAM Multiscale Model. Simul. 5 (1), 304–336 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  36. F. L. Bakharev and S. A. Nazarov, “Open waveguides in doubly periodic junctions of domains with different limit dimensions,” Sib. Math. J. 56 (4), 575–592 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  37. V. A. Kozlov, V. G. Maz’ya, and A. B. Movchan, “Asymptotic analysis of a mixed boundary value problem in a multi-structure,” Asympt. Anal. 8 (2), 105–143 (1994).

    MathSciNet  MATH  Google Scholar 

  38. S. A. Nazarov, “Junctions of singularly degenerating domains with different limit dimensions. 1,” J. Math. Sci. 80 (5), 1989–2034 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  39. S. A. Nazarov, “Junctions of singularly degenerating domains with different limit dimensions. 2,” J. Math. Sci. 97 (3), 4085–4108 (1997).

    Article  MATH  Google Scholar 

  40. S. A. Nazarov and Ya. Sokolovskii, “The topological derivative of the Dirichlet integral under formation of a thin bridge,” Sib. Math. J. 45 (2), 341–356 (2004).

    Article  MathSciNet  Google Scholar 

  41. S. A. Nazarov, “Junction problem of bee-on-ceiling type in the theory of anisotropic elasticity,” C. R. Acad. Sci. Paris, Ser. 1 320 (11), 1419–1424 (1995).

    MATH  Google Scholar 

  42. V. A. Kozlov, V. G. Maz’ya, and A. B. Movchan, “Asymptotic representation of elastic fields in a mMulti-structure,” Asymptot. Anal. 11 (4), 343–415 (1995).

    MATH  Google Scholar 

  43. S. A. Nazarov, “Korn’s inequalities for junctions of spatial bodies and thin rods,” Math. Meth. Appl. Sci. 20 (3), 219–243 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  44. V. A. Kozlov, V. G. Maz’ya, and A. B. Movchan, “Fields in non-degenerate 1D–3D elastic multistructures,” Q. J. Mech. Appl. Math. 54 (2), 177–212 (2001).

    Article  MATH  Google Scholar 

  45. S. A. Nazarov, “Asymptotic analysis and modeling of the jointing of a massive body with thin rods,” J. Math. Sci. 127 (5), 2172–2263 (2004).

    Google Scholar 

  46. S. A. Nazarov, “Korn’s inequalities for elastic junctions of massive bodies and thin plates and rods,” Russ. Math. Surv. 63 (1), 35–107 (2008).

    Article  MATH  Google Scholar 

  47. S. A. Nazarov and Yu. A. Romashev, “Variation of the intensity factor under rupture of the ligament between two collinear cracks,” Izv. Akad. Nauk Arm. SSR. Mekh., No. 4, 30–40 (1982) [in Russian].

  48. S. A. Nazarov, “Asymptotic conditions at a point, self-adjoint extensions of operators and the method of matched asymptotic expansions,” Trans. Am. Math. Soc. Ser. 2 193, 77–126 (1996).

    Google Scholar 

  49. S. A. Nazarov, “Trapped modes for a cylindrical elastic waveguide with a damping gasket,” Comput. Math. Math. Phys. 48 (5), 816–833 (2008).

    Article  MathSciNet  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (project no. 22–11–00046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Nazarov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by I. Obrezanova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarov, S.A. Abnormal Transmission of Elastic Waves through a Thin Ligament Connecting Two Planar Isotropic Waveguides. Mech. Solids 57, 1908–1922 (2022). https://doi.org/10.3103/S0025654422080222

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654422080222

Keywords:

Navigation