Skip to main content
Log in

Method of Calculating Plates Subjected to an Inertial Load Moving at a Variable Speed

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

A method is proposed for calculating plates under an inertial load moving at a variable speed. Test problems of impact effect and motion of a load at a variable speed on a freely supported rectangular plate are considered. Nonlinear contact of the load and plate is modeled. The problem of interaction of a transport system moving in the braking mode after landing on an elastically supported extended plate is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5

REFERENCES

  1. L. Fryba, Vibration of Solids and Structures under Moving Loads (Academia, Prague, 1972).

    Book  MATH  Google Scholar 

  2. Zheng Lu, Hailin Yao, Yongxiang Zhan, and Zhi Hu, “Vibrations of a plate on a two-parameter foundation subjected to moving rectangular loads of varying velocities,” JVE Int. LTD. J. Vibroeng. 16 (3), 1543–1554 (2014).

    Google Scholar 

  3. E. Ghafoori, M. H. Kargarnovin, and A. R. Ghahremani, “Dynamic responses of a rectangular plate under motion of an oscillator using a semi-analytical method,” J. Vib. Control 17 (9), 1310–1324 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. N. Blinov, “Plate dynamical reaction onto moving loads,” Zh. Sib. Fed. Univ. Mat. Fiz. 2 (1), 41–47 (2009).

    Google Scholar 

  5. A. P. Filippov, Vibration of Deformable Systems (Mashinostroenie, Moscow, 1970) [in Russian].

    Google Scholar 

  6. S. S. Kokhmanyuk, E. G. Yanyutin, and L. G. Romanenko, Vibrations of Deformable Systems under Pulse and Moving Loads (Naukova dumka, Kiev, 1980) [in Russian].

    MATH  Google Scholar 

  7. M. I. Serazutdinov, “Vibration of a plate under uniformly distributed loading moving with variable velocity,” in Proc. Seminar on the Theory of Shells (Kazan Physical and Technical Inst. USSR Acad. Sci., Kazan, 1975), Issue 6, pp. 163–167.

  8. C. E. Inglis, A Mathematical Treatise on Vibrations in Railway Bridges (Univ. Press, Cambridge, 1934).

    MATH  Google Scholar 

  9. A. V. Morgaevskii, “On vibrations of a plate carrying a moving load,” Prikl. Mekh. 2 (8), 64–74 (1966).

    Google Scholar 

  10. I. I. Ivanchenko, “Determining moving and impulsive loads of beam systems with distributed parameters,” Int. Appl. Mech. 24 (9), 931–938 (1988).

    MATH  ADS  Google Scholar 

  11. I. I. Ivanchenko, “On the action of a movable load on bridges,” Mech. Solids 32 (6), 153–157 (1997).

    Google Scholar 

  12. I. I. Ivanchenko, “Design of framed structures modeling bridges for moving loads,” Mech. Solids 36 (4), 121–132 (2001).

    Google Scholar 

  13. I. I. Ivanchenko, “Method to calculate rods under an inertial load moving with variable speed,” Mech. Solids 55, 1035–1041 (2020).

    Article  MATH  ADS  Google Scholar 

  14. I. I. Ivanchenko, Bridge Dynamics: High-Speed Moving, Aerodynamic and Seismic Loads (Nauka, Moscow, 2021) [in Russian].

    Google Scholar 

  15. P. Museros, A. E. Martinez-Castro, and A. Castillo-Linares, “Semi-analytic solution for Kirchhoff plates traversed by moving loads,” in Proc. EURODYN 2005, Structure Dynamics (Paris, 2005), Vol. 3, pp. 1619–1625.

  16. G. Bonin, G. Cantisani, G. Loprencipe, and A. Ranzo, “Modeling of dynamic phenomena in road and airport pavements,” in Proc. 5th Int. Conf. CROW 2004 (Istanbul, 2004).

  17. Jing Yang, Huajiang Ouyang, and Dan Stancioiu, “An approach of solving moving load problems by ABAQUS and MATLAB using numerical modes,” in Proc. ICVE2015 (Shanghai, Sept. 18–20, 2015).

  18. M. Klasztorav and P. Sziugott, “Modeling and simulation of bridge-track-train systems at high service velocities with LS-DYNA,” in Proc. 12th Int. LS-DYNA Users Conf. (Detroit, 2012).

  19. K. J. Bathe and E. L. Wilson, Numerical Methods in Finite Element Analysis (Prentice-Hall, Englewood Cliffs, NJ, 1976).

    MATH  Google Scholar 

  20. N. Newmark, “A method of computation for structural dynamics,” J. Eng. Mech. Div. ASCE 85 (EM3), 67–94 (1959).

    Article  Google Scholar 

  21. S. Timoshenko, Vibration Problems in Engineering (Van Nostrand Co., New York, 1928), pp. 79–81.

    MATH  Google Scholar 

  22. I. S. Shumilov, “Mathematical simulation for the wheels braking system of the main aircraft’s chassis,” Mash. Ustanovki: Proekt., Razrab. Ekspl. MGTU im. N. E. Baumana. Elektron. Zh., No. 01, 24–42 (2016).

  23. V. L. Balakin and Yu. N. Lazarev, Aircraft Flight Dynamics. Calculation of Trajectories and Flight Characteristics (Samara Aerospace Univ. Named after S. P. Korolev, Samara, 2011) [in Russian].

  24. I. I. Ivanchenko, “Numerical simulation of wave processes in Timoshenko beam laying on set of elastic-viscous inertial supports,” in Proc. 2nd All-Russian Sci. Conf. Wave Dynamics of Machines and Structures (Nizhny Novgorod, Oct. 28–31, 2007) [in Russian].

  25. S. Leibovich and A. R. Seebass, Nonlinear Waves (Cornell Univ. Press, 1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Ivanchenko.

Additional information

Translated by M. Shmatikov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanchenko, I.I. Method of Calculating Plates Subjected to an Inertial Load Moving at a Variable Speed. Mech. Solids 57, 2111–2122 (2022). https://doi.org/10.3103/S0025654422080167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654422080167

Keywords:

Navigation