Skip to main content
Log in

Contact with Intermolecular Interactions for a Viscoelastic Layer (Self-Consistent Approach): Feature Analysis of the Indenter Approach/Retract Process

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

An Erratum to this article was published on 18 October 2022

This article has been updated

Abstract

In this paper, we consider the contact of an infinitely extended plane indenter and a viscoelastic layer within the framework of the Deryagin self-consistent approach with surface (traditional formulation) and volumetric (refined formulation) application of intermolecular interaction forces. Equations that describe the time change in the contact gap for such a contact are obtained. A condition, under which an abrupt time change in the contact gap is possible, is formulated. Calculations that indicate the nonmonotonic nature of the time dependences of the contact gap and pressure in the indenter approach and retract modes are performed. It is shown that the traditional and refined problem formulations can lead to significantly different results of calculating the characteristics of the contact between the indenter and the viscoelastic layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Change history

REFERENCES

  1. B. Derjaguin, “Untersuchungen über die Reibung und Adhäsion, IV. Theorie des Anhaftens kleiner Teilchen,” Kolloid-Z. 69 (2), 155–164 (1934).

    Article  Google Scholar 

  2. K. L. Johnson, K. Kendall, and A. D. Roberts, “Surface energy and the contact of elastic solids,” Proc. R. Soc. London, Ser. A 324 (1558), 301–313 (1971).

    Article  ADS  Google Scholar 

  3. B. V. Derjaguin, V. M. Muller, and Yu. P. Toporov, “Effect of contact deformations on the adhesion of particles,’ J. Colloid Interface Sci. 53 (2), 314–326 (1975).

    Article  ADS  Google Scholar 

  4. I. Sridhar, K. L. Johnson, and N. A. Fleck, “Adhesion mechanics of the surface force apparatus,” J. Phys. D: Appl. Phys. 30 (12), 1710–1719 (1997).

    Article  ADS  Google Scholar 

  5. A. O. Sergici, G. G. Adams, and S. Müftü, “Adhesion in the contact of a spherical indenter with a layered elastic half-space,” J. Mech. Phys. Solids 54 (9), 1843–1861 (2006).

    Article  ADS  Google Scholar 

  6. E. D. Reedy, “Thin-coating contact mechanics with adhesion,” J. Mater. Res. 21 (10), 2660–2668 (2006).

    Article  ADS  Google Scholar 

  7. F. M. Borodich, B. A. Galanov, N. V. Perepelkin, and D. A. Prikazchikov, “Adhesive contact problems for a thin elastic layer: asymptotic analysis and the JKR theory,” Math. Mech. Solids 24 (5), 1405–1424 (2018).

    Article  MathSciNet  Google Scholar 

  8. J. A. Greenwood and K. L. Johnson, “The mechanics of adhesion of viscoelastic solids,” Philos. Mag. A 43 (3), 697–711 (1981).

    Article  ADS  Google Scholar 

  9. I. G. Goryacheva, M. M. Gubenko, and Yu. Yu. Makhovskaya, “Sliding of a spherical indenter on a viscoelastic foundation with the forces of molecular attraction taken into account,” J. Appl. Mech. Techn. Phys. 55 (1), 81–88 (2014).

    Article  ADS  Google Scholar 

  10. Y. Y. Lin and C. Y. Hui, “Mechanics of contact and adhesion between viscoelastic spheres: an analysis of hysteresis during loading and unloading,” J. Polym. Sci. Part B: Polym. Phys. 40, 772–793 (2002).

    Article  ADS  Google Scholar 

  11. G. Haiat, HuyM. C. Phan, and E. Barthel, “The adhesive contact of viscoelastic spheres,” J. Mech. Phys. Solids 51 (1), 69–99 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  12. V. M. Muller, V. S. Yushchenko, and B. V. Derjaguin, “On the influence of molecular forces on the deformation of an elastic sphere and its sticking to a rigid plane,” J. Colloid Interface Sci. 77 (1), 91–101 (1980).

    Article  ADS  Google Scholar 

  13. P. Attard and J. L. Parker, “Deformation and adhesion of elastic bodies in contact,” Phys. Rev. A 46 (12), 7959–7971 (1992).

    Article  ADS  Google Scholar 

  14. J. A. Greenwood, “Adhesion of elastic spheres,” Proc. R. Soc. London, Ser. A 453 (1961), 1277–1297 (1997).

  15. I. A. Soldatenkov, “The use of the method of successive approximations to calculate an elastic contact in the presence of molecular adhesion,” J. Appl. Math. Mech. 76 (5), 597–603 (2012).

    Article  MathSciNet  Google Scholar 

  16. R. M. McMeeking, “A Maxwell stress for material interactions,” J. Colloid Interface Sci. 199 (2), 187–196 (1998).

    Article  ADS  Google Scholar 

  17. R. A. Sauer and S. Li, “A contact mechanics model for quasi-continua,” Int. J. Num. Meth. Eng. 71 (8), 931–962 (2007).

    Article  MathSciNet  Google Scholar 

  18. L. H. He, “Stress and deformation in soft elastic bodies due to intermolecular forces,” J. Mech. Phys. Solids 61 (6), 1377–1390 (2013).

    Article  MathSciNet  ADS  Google Scholar 

  19. I. A. Soldatenkov, “The contact problem with the bulk application of intermolecular interaction forces (a refined formulation),” J. Appl. Math. Mech. 77 (6), 629–641 (2013).

    Article  MathSciNet  Google Scholar 

  20. J. T. G. Overbeek and M. J. Sparnaay, “Classical coagulation. London-van der Waals attraction between macroscopic objects,” Discuss. Faraday Soc. 18, 12–24 (1954).

    Article  Google Scholar 

  21. J.-J. Wu, “The jump-to-contact distance in atomic force microscopy measurement,” J. Adhes. 86 (11), 1071–1085 (2010).

    Article  Google Scholar 

  22. I. G. Kaplan, Intermolecular Interactions: Physical Picture, Computational Methods and Model Potentials (Wiley, Chichester, 2006).

    Book  Google Scholar 

  23. J. N. Israelachvili, Intermolecular and Surface Forces (Academic, London, 2011).

    Google Scholar 

  24. R. M. Christensen, Theory of Viscoelasticity. An Introduction (Acad. Press, New York, 1971).

    Google Scholar 

  25. P. M. Ogibalov, V. A. Lomakin, and B. P. Kishkin, Mechanics of Polymers (MSU, Moscow, 1975) [in Russian].

    Google Scholar 

  26. A. A. Adamov, V. P. Matveenko, N. A. Trufanov, and I. N. Shardakov, Methods of Applied Viscoelasticity (Ural Branch RAS, Yekaterinburg, 2003) [in Russian].

    Google Scholar 

  27. I. A. Soldatenkov, “Contact with intermolecular interaction forces for a viscoelastic layer (self-consistent approach): calculation of the stress-strain state and energy dissipation,” Mech. Solids 55 (7), 159–174 (2020).

    Article  Google Scholar 

  28. G. M. Fikhtengol’ts, Course of Differential and Integral Calculus. In 3 Vols. (Fizmatlit, Moscow, 2001), Vols. 1, 2 [in Russian].

    Google Scholar 

  29. Y. L. Chen, C. A. Helm, and J. N. Israelachvili, “Molecular mechanisms associated with adhesion and contact angle hysteresis of monolayer surfaces,” J. Phys. Chem. 95 (26), 10736–10747 (1991).

    Article  Google Scholar 

  30. N. N. Kalitkin, Numerical Methods, 2nd ed. (BKhV-Peterburg, St. Petersburg, 2011) [in Russian].

  31. V. V. Stepanov, Course of Differential Equations (Gos. Izd. Fiz.-Mat. Lit., Moscow, 1959) [in Russian].

    Google Scholar 

Download references

Funding

This work was carried out within a state assignment (state registration no. АААА-А20-120011690132-4) and was partially supported by the Russian Foundation for Basic Research, project no. 18-08-00558.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Soldatenkov.

Additional information

Translated by A. Ivanov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soldatenkov, I.A. Contact with Intermolecular Interactions for a Viscoelastic Layer (Self-Consistent Approach): Feature Analysis of the Indenter Approach/Retract Process. Mech. Solids 56, 1259–1276 (2021). https://doi.org/10.3103/S0025654421070232

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654421070232

Keywords:

Navigation