Skip to main content
Log in

The Degenerate Structure of Transformation Twins and the Monocrystallinity of Part of the Thin-Plate Martensite Initiated by a Strong Magnetic Field

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract–In the dynamic theory, the formation of twin martensite crystals is the result of a coordinated propagation of relatively long-wave (\(\ell \)-waves) and short-wave (s-waves) displacements. The matching condition is analyzed for the γ–α martensitic transformation in iron-based alloys, taking into account the quasi-longitudinalness of the \(\ell \)-wave carrying compression deformation. It has been shown for the first time that the previously established single-crystal effect of part of the crystals of thin-plate martensite, which arises upon cooling under the action of a strong magnetic field, can naturally be interpreted as a consequence of the formation of a degenerate structure of transformation twins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. V. Kurdyumov, L. M. Utevskiy, and R. I. Entin, Transformations in Iron and Steel (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  2. M. P. Kashchenko, Wave Model of Martensite Growth upon the g–a Transformation in Iron-Based Alloys, 2nd ed. (NITs Regul. i Khaotich. Dinamika, Izhevsk. Inst. Komp’yuternykh Issledovanii, Izhevsk, 2010) [in Russian].

  3. M. P. Kashchebko and V. G. Chashchina, Dynamic Model of Twinned Martensitic Crystal Formation at g–a Transformation in Iron Alloys (UGLTU, Ekaterinburg, 2009) [in Russian].

    Google Scholar 

  4. M. P. Kashchenko and V. G. Chashchina, “Dynamic model of supersonic martensitic crystal growth,” Phys. Usp. 54 (4), 331–349 (2011).

  5. H. Warlimont and L. Delaey, Martensitic Transformations in Copper-Silver-and Gold-Based Alloys (Pergamon Press, Oxford, 1974; Nauka, Moscow, 1980).

  6. M. A. Shtremel’, Strength of Alloys, Part II: Deformation (MISIS, Moscow, 1997) [in Russian].

  7. M. P. Kashchenko, V. G. Chashchina, and S. V. Vikharev, “Dynamic model of the formation of twinned martensite crystals: I. Control wave process and the removal of degeneracy in twin-boundary orientation,” Phys. Met. Metallogr. 110 (3), 200–209 (2010).

  8. M. P. Kashchenko, V. G. Chashchina, and S. V. Vikharev, “Dynamic model of the formation of twinned martensite crystals: II. Pretransition states and relationships between the volumes of the twin components,” Phys. Met. Metallogr. 110 (4), 305–317 (2010).

  9. M. P. Kashchenko and V. G. Chashchina, “Key role of transformation twins in comparison of results of crystal geometric and dynamic analysis for thin-plate martensite,” Phys. Met. Metallogr. 114 (10), 821–825 (2013).

  10. M. P. Kashchenko, I. F. Latypov, and V. G. Chashchina, “Correlation of velocities of the waves controlling the thin-plate a-martensite formation and the modulation of the transformation twin structure,” Lett. Mat., No. 2, 146–150 (2017).

  11. M. P. Kashchenko and V. G. Chashchina, “Effect of the attenuation of short-wavelength displacements on the formation of transformation twins in a-martensite crystals,” Phys. Met. Metallogr. 118 (4), 311–315 (2017).

  12. M. P. Kashchenko, N. M. Kashchenko, and V. G. Chashchina, “Dynamic options for forming transformation twins,” Mat. Today: Proc. 4, 4605–4610 (2017).

    Google Scholar 

  13. M. P. Kashchenko, N. M. Kashchenko, and V. G. Chashchina, “Effect of change in the wavelengths of short wave shifts on the formation of a twin structure fragment in thin lamellar a-martensite crystals,” Phys. Met. Metallogr. 119 (1), 1–5 (2018).

  14. M. P. Kashchenko, N. M. Kashchenko, and V. G. Chashchina, “The formation of martensite crystals with a degenerate structure of transformation twins,” Lett. Mat., No. 4, 424–429 (2018).

  15. R. P. Bunshah and R. F. Mehl, “Rate of propagation of martensite,” Trans. AIME 197, 1251–1258 (1953).

    Google Scholar 

  16. V. M. Schastlivtsev, Yu. V. Kaletina, and E. A. Fokina, Martensitic Transformation in a Magnetic Field (URO RAN, Ekaterinburg, 2007) [in Russian].

    Google Scholar 

  17. A. Shibata, T. Murakami, S. Morito, T. Furuhara, et al., “The origin of midrib in lenticular martensite,” Mat. Trans., No. 6, 1242–1248 (2008).

  18. M. S. Wechsler, D. S. Lieberman, and T. A. Read, “On the theory of the formation of martensite,” J. Met., No. 11, 1503–1515 (1953).

  19. J. S. Bowles and J. K. Mackenzie, “The crystallography of martensite transformations I,” Acta Met., No. 1, 129–137 (1954).

  20. M. P. Kashchenko, N. M. Kashchenko, and V. G. Chashchina, “Interpretation of packet martensite crystals in iron alloys as crystals with a degenerate structure of transformation twins,” in Proceedings of Scientific Conference XXI Winter School on Continuum Mechanics (PFITS URO RAN, Perm, 2019), p. 139.

  21. G. Haush and H. Warlimont, “Single crystalline elastic constants of ferromagnetic face centered cubic fe-ni invar alloys,” Acta Met., No. 4, 401–414 (1973).

  22. F. I. Fedorov, Theory of Elastic Waves in Crystals (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  23. E. D. Hallman and B. N. Brockhause, “Crystal dynamics of nickel-iron and copper-zinc alloys,” Canadian J. Phys. 47 (10), 11–17 (1969).

    Article  Google Scholar 

  24. M. P. Kashchenko, N. M. Kashchenko, and V. G. Chashchina, “Initial excited state and divergence of wave beams as factors responsible for the realization of the wave process that controls the growth of transformation twins,” Phys. Metals Metallogr. 120 (5), 422–428 (2019).

  25. F. F. Satdarova, “Dislocation structure of martensitic transformation in carbon steel,” Phys. Metals Metallogr. 117 (4), 355–363 (2016).

  26. M. P. Kashchenko and V. G. Chashchina, “Problem of critical grain size under γ → α martensitic transformation. thermodynamic analysis with allowance for spatial scales typical for the stage of nucleation of martensite,” Fiz. Mesomekh. 13 (1), 29–35 (2010).

    Google Scholar 

  27. M. P. Kashchenko and V. G. Chashchina, “Dependence of the temperature of the start of γ → α martensitic transformation on the grain size,” Fiz. Mesomekh. 13 (1), 37–45 (2010).

    Google Scholar 

  28. M. P. Kashchenko and V. G. Chashchina, Dynamical Model of the γ → α Transformation and a Solution to the Critical Grain Size Problem (Izhevsk. Inst. Komp’yuternykh Issledovanii, Izhevsk, 2010) [in Russian].

    Google Scholar 

  29. M. P. Kashchenko, “Interpretation of some characteristic morphological indicators of martensite of systems iron-nickel, iron-carbon using the phonon maser model,” Fiz. Met. Metalloved.58 (5), 862–869 (1984).

    Google Scholar 

  30. A. A. Leont’ev, V. M. Schastlivtsev, and L. N. Romashev, “Habitus and orientation of martensite crystals formed under action of magnetic field,” Fiz. Met. Metalloved.58 (5), 950–957 (1984).

    Google Scholar 

  31. M. P. Kashchenko, N. M. Kashchenko, V. G. Chashchina, et al., “Dynamic scenarios of the formation of martensite with the {110} habits in the Ni50Mn50 alloy,” Phys. Metals Metallogr. 120 (8), 782–789 (2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Kashchenko.

Ethics declarations

The authors are grateful to the participants of the XXI Winter School on Continuum Mechanics (Perm, February 18-22, 2019) and the international conference MGCTF 2019 (St. Petersburg, July 1-5, 2019) for discussing the results.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashchenko, M.P., Kashchenko, N.M. & Chashchina, V.G. The Degenerate Structure of Transformation Twins and the Monocrystallinity of Part of the Thin-Plate Martensite Initiated by a Strong Magnetic Field. Mech. Solids 55, 6–15 (2020). https://doi.org/10.3103/S0025654420010112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654420010112

Keywords:

Navigation