Skip to main content
Log in

Large plastic strains in the problem of high-speed loading of an aluminum ribbon

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

A method for numerical simulation of the motion of the plane liner in a magnetic compressor based on a combination of the transverse and longitudinal two-dimensional models is proposed. The method permits modeling the interaction of the liner ribbon with the rigid basement for the liner kinematic characteristics close to the experimental ones. Three different model are considered to justify the choice of the mathematical model of an elastoplastic body which would be suitable for solving similar problems. A series of computations is performed, and the results and scope of each of the models are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Rodin, Model of Plastic Liner Motion in Magnetic Compressor and Its Application, Preprint No. 50 (IPMRAN, Moscow, 2009) [in Russian].

    Google Scholar 

  2. M. P. Galanin, A. P. Lototskii, and A. S. Rodin, Mathematical Simulation of Liner Motion in the Cross-Section of Magnetic Compressor, Preprint No. 57 (IPMRAN, Moscow, 2009) [in Russian].

    Google Scholar 

  3. M. P. Galanin, A. P. Lototskii, A. S. Rodin, and I. A. Shcheglov, “Liner Motion in the Cross-Section of Magnetic Compressor,” Vestink MGTU im. Baumana. Est. Nauki, No. 2, 65–84 (2010).

    Google Scholar 

  4. M. P. Galanin, A. P. Lototskii, and A. S. Rodin, “Liner Motion in Various Cross-Sections of Magnetic Compressor,” Mat. Model. 22 (10), 35–55 (2010).

    MATH  Google Scholar 

  5. M. P. Galanin, M. K. Krylov, A. P. Lototskii, and A. S. Rodin, Mathematical Simulation of Magnetic Compressor Operation, Preprint No. 5 (IPMRAN, Moscow, 2011) [in Russian].

    Google Scholar 

  6. E. V. Grabovskii, V. P. Bakhtin, N. M. Efremov, et al., “Experimental and Computational Studies of Magnetic Compressor Flow with Strip Liner Supplied from a Capacitive Storage,” Yadern. Fiz. Inzhiniring 4 (2), 136–145 (2013).

    Google Scholar 

  7. E. V. Grabovskii, V. P. Bakhtin, A. M. Zhitlukhin, et al., “Operation of a Magnetic Pulse Compressor with Electrodynamic Acceleration of a Liner,” Zh. Tekhn. Fiz. 84 (7), 126–135 (2014) [Tech. Phys. (Engl. Transl.) 59 (7), 1072–1081 (2014)].

    Google Scholar 

  8. S. N. Korobeinikov, Nonlinear Deformation of Solids (Izdat. SO RAN, Novosibirsk, 2000) [in Russian].

    MATH  Google Scholar 

  9. D. Bland, Nonlinear Dynamical Elasticity (Blaisdell, London, 1969; Mir, Moscow, 1972).

    MATH  Google Scholar 

  10. V. S. Zarubin and G. N. Kuvyrkin, Mathematical Models of Continuum Mechanics and Electrodynamics (Izdat. MGTU im. Baumana, Moscow, 2008) [in Russian]

    MATH  Google Scholar 

  11. W. Prager, Introduction to Mechanics of Continua (Ginn, Boston, 1961; Izdat. Inostr. Lit., Moscow, 1963).

    MATH  Google Scholar 

  12. B. D. Annin and S. N. Korobeinikov, “Admissible Forms of Elastic Laws of Deformation in Constitutive Relations of Elastoplasticity,” Sib.Zh. Industr. Mat. 1 (1), 21–34 (1998).

    MathSciNet  Google Scholar 

  13. A. A. Pozdeev, P. V. Trusov, and Yu. I. Nyashin, Large Elastoplastic Strains: Theory, Algorithms, Applications (Nauka, Moscow, 1986) [in Russian].

    MATH  Google Scholar 

  14. M. Kleiber, Incremental Finite Element Modeling in Nonlinear Solid Mechanics (Ellis Horwood, Chichester, 1989).

    MATH  Google Scholar 

  15. L. Szabó and M. Balla, “Comparison of Some Stress Rates. II,” Int. J. Solids Struct. 25 (3), 279–297 (1989).

    Article  Google Scholar 

  16. T. Belytschko, W. K. Liu, and B. Moran, Nonlinear Finite Elements for Continua and Structures (Wiley, Chichester, 2000).

    MATH  Google Scholar 

  17. M. Kojic and K.-J. Bathe, Inelastic Analysis of Solids and Structures (Springer, New York, 2005).

    Google Scholar 

  18. O. Zienkiewicz, The Finite Element Method in Engineering Science (McGraw-Hill, New York, 1971; Mir, Moscow, 1975).

    MATH  Google Scholar 

  19. N. N. Malinin, Applied Theory of Plasticity and Creep (Mashinostroenie, Moscow, 1968) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Galanin.

Additional information

Original Russian Text © M.P. Galanin, M.K. Krylov, A.P. Lototskii, A.S. Rodin, 2017, published in Izvestiya Akademii Nauk, Mekhanika Tverdogo Tela, 2017, No. 2, pp. 66–79.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galanin, M.P., Krylov, M.K., Lototskii, A.P. et al. Large plastic strains in the problem of high-speed loading of an aluminum ribbon. Mech. Solids 52, 172–183 (2017). https://doi.org/10.3103/S0025654417020078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654417020078

Keywords

Navigation