Skip to main content
Log in

Methods for obtaining sufficient conditions for the stability of autonomous conservative systems

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

A computational method for obtaining sufficient conditions for the stability of the stationary solution of autonomous conservative systems is proposed in the paper. This method is adapted to linear autonomous gyroscopic systems with three degrees of freedom. It is based on the positive definiteness of a parametric quadratic form composed of the gyroscopic force matrices and the potential function. The control parameters for the stability of the zero solution of the gyroscopic system are the entries of the gyroscopic force matrix. The algorithm of the computational method includes estimating one gyroscopic force parameter in the equation constructed from a necessary stability condition.

A special example is used to demonstrate the application of this algorithm. Comparison is performed with some well-known methods for obtaining sufficient conditions on the basis of an incomplete set of first integrals of motion. It is shown that the positive definiteness of the modified potential energy may result in stable as well as unstable motions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Lyapunov, “General Problem of Stability of Motion,” in Collective Works (Izdat. AN SSSR, Moscow–Leningrad, 1956) Vol. 2, pp. 7–263 [in Russian].

    Google Scholar 

  2. N. G. Chetaev, Stability of Motion. Works in Analytical Mechanics (Izdat. AN SSSR, Moscow–Leningrad, 1962) [in Russian].

    Google Scholar 

  3. A. M. Letov, Stability of Nonlinear Controlled Systems (Fizmatgiz, Moscow, 1962) [in Russian].

    Google Scholar 

  4. A. M. Letov, Mathematical Theory of Control Processes (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  5. B. P. Demidovich, Lectures onMathematical Theory of Stability (Nauka, Moscow, 1967) [in Russian].

    MATH  Google Scholar 

  6. G. V. Kamenkov, Stability of Motion, Oscillations, Aerodynamics, Vol. 1 (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  7. G. V. Kamenkov, Stability and Oscillations of Nonlinear Systems, Vol. 2 (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  8. I. G. Malkin, Theory of Stability of Motion (Nauka, Moscow, 1966) [in Russian].

    MATH  Google Scholar 

  9. D. R. Merkin, Introduction to the Theory of Stability of Motion (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  10. P. A. Kuz’min, “Quadratic Integrals of Linear Mechanical Systems,” Prikl. Mat. Mekh. 24 (3), 575–577 (1960) [J. Appl. Math. Mech. (Engl. Transl.) 24 (3), 856–860 (1960)].

    MathSciNet  MATH  Google Scholar 

  11. L. A. Burlakova and V. D. Kregov, “Routh–Lyapunov Theorem in Systems with Linear Integrals,” in Direct Method in Stability and Its Applications (Nauka, Novosibirsk, 1981), pp. 151–165 [in Russian].

    Google Scholar 

  12. I. M. Lakhadanov, “On Stabilization of Potential Systems,” Prikl. Mat. Mekh. 39 (1), 53–58 (1975) [J. Appl. Math. Mech. (Engl. Transl.) 39 (1), 45–50 (1975)].

    MathSciNet  Google Scholar 

  13. I. M. Lakhadanov, “On Quadratic Integrals of Linear Autonomous Systems,” Prikl. Mat. Mekh. 42 (3), 555–557 (1978) [J. Appl. Math. Mech. (Engl. Transl.) 42 (3), 579–581 (1978)].

    MathSciNet  Google Scholar 

  14. N. N. Polyakov, S. A. Zegzhda, M. P. Yushkov, Theoretical Mechanics (Vysshaya Shkola, Moscow, 2000) [in Russian].

    Google Scholar 

  15. P. Appel, Theoretical Mechanics, Vol. 2: Dynamics of Systems. Analytical Mechanics (Fizmatgiz, Moscow, 1960) [in Russian].

    Google Scholar 

  16. L. A. Pars, A Treatise on Analytic Mechanics (Wiley, New York, 1965; Nauka, Moscow, 1971).

    MATH  Google Scholar 

  17. E. T. Whittaker, Analytical Dynamics (Udmurdskii Universitet, Izhevsk, 1999) [in Russian].

    MATH  Google Scholar 

  18. F. R. Gantmakher, Theory of Matrices (Nauka, Moscow, 1992) [in Russian].

    MATH  Google Scholar 

  19. E. A. Barbashin, Lyapunov Functions (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  20. M. A. Novikov, “On Necessary Conditions for Stability of a Gyroscopic System,” Sovr. Tekhnol. Sist. Anal. Model., No. 3, 80–86 (2013).

    Google Scholar 

  21. M. A. Novikov, “On Sufficient Conditions for Stability of a Linear Gyroscopic System,” Sovr. Tekhnol. Sist. Anal. Model., No. 4, 23–33 (2013).

    Google Scholar 

  22. I. S. Berezin and N. P. Zhidkov, Computational Methods (GIFML, Moscow, 1962) [in Russian].

    MATH  Google Scholar 

  23. R. M. Bulatovich, “The Stability of Linear Potential Gyroscopic Systems when the Potential Energy Has a Maximum,” Prikl. Mat. Mekh. 61 (3), 385–389 (1997) [J. Appl. Math. Mech. (Engl. Transl.) 61 (3), 371–375 (1997)].

    MathSciNet  MATH  Google Scholar 

  24. C. J. Lanczos, The Variational Principles of Mechanics (Univ. Toronto, Toronto, 1949; Mir, Moscow, 1965).

    MATH  Google Scholar 

  25. V. V. Kozlov, “Gyroscopic Stabilization and Parametric Resonance,” Prikl. Mat. Mekh. 64 (5), 739–745 (2001) [J. Appl. Math. Mech. (Engl. Transl.) 64 (5), 715–721 (2001)].

    MathSciNet  MATH  Google Scholar 

  26. T. V. Sal’nikova, “The Stability of Linear Potential Gyroscopic Systems,” Prikl. Mat. Mekh. 70 (1), 35–39 (2006) [J. Appl. Math. Mech. (Engl. Transl.) 70 (1), 32–35 (2006)].

    MathSciNet  MATH  Google Scholar 

  27. B. L. Van der Waerden, Contemporary Algebra, Vol. 2 (ONTI NKTP SSSR, Moscow–Leningrad, 1937) [in Russian].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Novikov.

Additional information

Original Russian Text © M.A. Novikov, 2016, published in Izvestiya Akademii Nauk, Mekhanika Tverdogo Tela, 2016, No. 6, pp. 29–43.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, M.A. Methods for obtaining sufficient conditions for the stability of autonomous conservative systems. Mech. Solids 51, 643–653 (2016). https://doi.org/10.3103/S0025654416060030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654416060030

Keywords

Navigation