Skip to main content
Log in

Analog of the plastic flow theory for describing martensitic inelastic strains in shape memory alloys

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

Martensitic inelasticity effects in shape memory alloys are described by a version of the plastic flow theory with isotropic and translational hardening, where the maximum value of the phase-structure strain intensity is taken for the isotropic hardening parameter. We show that, in the framework of this model, the entire inelastic deformation process is generally divided into the stages of purely translational and combined hardening and the tangent modulus is discontinuous on the interface between these stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. B. Kurdyumov and L. G. Khandros, “On the “Thermoelastic” Equilibrium on Martensitic Transformations,” Dokl. Akad. Nauk SSSR 66(2), 211–214 (1949) [Ukr. J. Phys. (Engl. Transl.) 53 Spec. Issue, 89–92 (2008)].

    Google Scholar 

  2. V. A. Likhachev, S. L. Kuz’min, and Z. P. Kamentseva, Shape Memory Effect (Izd-vo LGU, Leningrad, 1987) [in Russian].

    Google Scholar 

  3. Y. Liu, Z. Xie, J. van Humbeeck, and L. Delaey, “Some Results on the Detwinning Process in NiTi Shape Memory Alloys,” Scripta Mater. 41(12), 1273–1281 (1999).

    Article  Google Scholar 

  4. P. Thamburaja, “Constitutive Equations for Martensitic Reorientation and Detwinning in Shape-Memory Alloys,” J. Mech. Phys. Solids 53, 825–856 (2005).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Y. Liu and H. Xiang, “Apparent Modulus of Elasticity of Near-Equiatomic NiTi,” J. Alloys Compounds 270, 154–159 (1998).

    Article  Google Scholar 

  6. S. A. Abdrakhmanov and K. D. Dyushkeev, Laws of Behavior of Shape-Memory Alloys under Thermal Force Action (Ilim, Bishkek, 1992) [in Russian].

    Google Scholar 

  7. Y. Liu, J. van Humbeeck, R. Stalmans, and L. Delaey, “Some Aspects of the Properties of TiNi Shape Memory Alloy,” J. Alloys Compounds 247, 115–121 (1997).

    Article  Google Scholar 

  8. Y. Liu, Z. Xie, J. van Humbeeck, and L. Delaey, “Asymmetry of Stress-Strain State Curves under Tension and Compression for NiTi Shape Memory Alloys,” Acta Mater. 46(12), 4325–4338 (1998).

    Article  Google Scholar 

  9. V. A. Lomakin, “Mechanics of Media with Stress-State-Dependent Properties,” Fiz. Mezomekh. 10(5), 41–52 (2007).

    MathSciNet  Google Scholar 

  10. V. A. Lomakin, “Constitutive Models of Mechanical Behavior of Media with Stress-State-Dependent Material Properties,” Adv. Struct. Mater. 7, 339–350 (2011).

    Article  MathSciNet  Google Scholar 

  11. J. A. Shaw and S. Kyriakides, “Thermomechanical Aspect of TiNi,” J. Mech. Phys. Solids 43(8), 1243–1281 (1995).

    Article  ADS  Google Scholar 

  12. G. Airoldi, T. Ranucci, G. Riva, and A. Sciacca, “The Two-Way Memory Effect by the Pre-Strain Training Method in a 50Ti40Ni10Cu (at %) Alloy,” Scripta Mater. 34(2), 287–292 (1996).

    Article  Google Scholar 

  13. A. A. Movchan, S. A. Kazarina, Tant Zin Aung, “Analog of Theory of Plasticity for Describing Deformations of Shape Memory Alloys under Phase and Structure Transformations,” Deform. Razrush. Mater., No. 9, 2–6 (2009).

    Google Scholar 

  14. A. A. Movchan and S. A. Kazarina, “Shape Memory Materials as an Object of Deformable Solid Mechanics: Experimental Studies, Constitutive Relations, Solution of Boundary-Value Problems,” Fiz. Mezomekh. 15(1), 105–116 (2012).

    Google Scholar 

  15. A. A. Movchan, I. A. Movchan, and L. G. Sil’chenko, “Micromechanical Model of Nonlinear Deformation of Shape Memory Alloys in Phase and Structure Transformations,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 3, 118–130 (2010) [Mech. Solids (Engl. Transl.) 45 (3), 406–416 (2010)].

    Google Scholar 

  16. Z. P. Kamentseva, S. L. Kuz’min, and V. A. Likhachev, “Strain Hardening of Titanium Nickelide,” Probl. Prochn., No. 9, 87–91 (1980) [Strength of Materials (Engl. Transl.) 12 (9), 1151–1155 (1980)].

    Google Scholar 

  17. A. Bertram, “Thermo-Mechanical Constitutive Equations for the Description of Shape Memory Effect in Alloys,” Nuclear Engng Des. 74(2), 173–182 (1982).

    Article  MathSciNet  Google Scholar 

  18. A. E. Volkov, V. A. Likhachev, and A. I. Rozov, “Mechanics of Plastic Materials with Phase Transitions,” Vestnik Leningrad. Univ. Mat. Mekh. Astronom., No. 19 (4), 30–37 (1984) [Vestnik Leningrad Univ. Math. (Engl. Transl.)].

    Google Scholar 

  19. M. A. Savi, A. Paiva, A. P. Baeta-Neves, and P. M. C. L. Pacheco, “Phenomenological Modeling and Numerical Simulation of Shape Memory Alloys: A Thermo-Plastic-Phase Transformation Coupled Model,” J. Int. Mater. Syst. Struct. 13(5), 261–273 (2002).

    Article  Google Scholar 

  20. A. F. Saleeb, S. A. Pabudala, and A. Kumar, “A Multi-Axial, Multi-Mechanism Based Constitutive Model for the Comprehensive Representation of the Evolutionary Response of SMA’s under General Thermomechanical Loading Condition.” Int. J. Plasticity 27(5), 655–687 (2011).

    Article  MATH  Google Scholar 

  21. J. Arghavani, F. Auricchio, and R. Naghdabasi, “A Finite Strain Kinematic Hardening Constitutive Model Based on Hencky Strain: General Framework, Solution Algorithm, and Application to Shape Memory Alloys,” Int. J. Plasticity 27(6), 940–961 (2011).

    Article  MATH  Google Scholar 

  22. Yu. I. Kadashevich and V. V. Novozhilov, “The Theory of Plasticity which Takes into Account the Bauschinger Effect,” Dokl. Akad. Nauk SSSR 117(4), 586–588 (1957).

    MathSciNet  Google Scholar 

  23. Yu. I. Kadashevich and V. V. Novozhilov, “The Theory of Plasticity which Takes into Account Residual Microstresses,” Prikl. Mat. Mekh. 22(1), 78–89 (1958) [J. Appl. Math. Mech. (Engl. Transl.) 22 (1), 104–118 (1958)].

    Google Scholar 

  24. R. A. Aratyunyan and A. A. Vakylenko, “On Multiple Loading of Elastoplastic Medium,” Izv. Akad. Nauk SSSR. Mekh., No. 4, 53–61 (1965).

    Google Scholar 

  25. A. A. Movchan, S. A. Kazarina, I. V. Mishustin, and I. A. Movchan, “Thermodynamical Justification of the Model of Nonlinear Deformation of Shape Memory Alloys in Phase and Structure Transformations,” Deform. Razrush. Mater., No. 8, 2–9 (2009).

    Google Scholar 

  26. A. A. Movchan, L. G. Silchenko, and T. L. Silchenko, “Taking Account of the Martensite Inelasticity in the Reverse Phase Transformation in Shape Memory Alloys,” Izv.Akad. Nauk. Mekh. Tverd. Tela, No. 2, 44–56 (2011) [Mech. Solids (Engl. Transl.) 46 (2), 194–203 (2011)].

    Google Scholar 

  27. R. J. Wasilevski, “Martensitic Transformation and Fatigue Strength in TiNi,” Scripta Metal. 5(3), 207–211 (1974).

    Article  Google Scholar 

  28. K. N. Melton and O. Mercier, “Fatigue of TiNi Thermoelastic Martensites,” Acta Metall. 27(1), 137–144 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Mishustin.

Additional information

Original Russian Text © I.V. Mishustin, A.A. Movchan, 2015, published in Izvestiya Akademii Nauk. Mekhanika Tverdogo Tela, 2015, No. 2, pp. 78–95.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishustin, I.V., Movchan, A.A. Analog of the plastic flow theory for describing martensitic inelastic strains in shape memory alloys. Mech. Solids 50, 176–190 (2015). https://doi.org/10.3103/S0025654415020077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654415020077

Keywords

Navigation