Skip to main content
Log in

Dislocation nucleation and motion in metals and alloys at high-rate deformation: Molecular dynamic simulation

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

Molecular dynamic simulation was used to calculate the critical stresses necessary for dislocations to nucleate and move in the dynamic friction mode and determine the coefficients of dislocation phonon friction in metals with point defects and Guinier-Preston (GP) zones (in the Al-Cu alloy) taken into account. The temperature dependencies of the critical stresses required to overcome the GP zones in Al at different speeds of dislocation motion were analyzed to distinguish the thermofluctuation and dynamic (weakly depending on T) contributions to the yield strength at high-rate deformations. It was noted that the dislocation nucleation stresses strongly decrease with increasing temperature in the defect-free case and the stresses of dislocation heterogeneous nucleation on GP clusters remain nearly unchanged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. I. Kanel, V. E. Fortov, and S. V. Razorenov, “Shock Waves in Condensed-State Physics,” Uspekhi Fiz. Nauk 177(8), 809–830 (2007) [Phys. Uspekhi (Engl. Transl.) 50 (8), 771–791 (2007)].

    Article  Google Scholar 

  2. V. I. Al’shits and V. L. Indenbom, “Dynamical Drag on Dislocations,” Uspekhi Fiz. Nauk 115(1), 3–38 (1975). [Sov. Phys. Usp. (Engl. Transl) 18 (1), 1–20 (1975)].

    Article  Google Scholar 

  3. G. I. Kanel, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shock-Wave Phenomena in Condensed Media (Yanus-K, Moscow, 1996) [in Russian].

    Google Scholar 

  4. G. I. Kanel, S. V. Razorenov, K. Baumung, and J. Singer, “Dynamic Yield and Tensile Strength of Aluminum Single Crystals at Temperatures up to the Melting Point,” J. Appl. Phys. 90(1), 136–143 (2001).

    Article  ADS  Google Scholar 

  5. E. V. Zaretsky and G. I. Kanel, “Response of Copper to Shock-Wave Loading at Temperatures up to the Melting Point,” J. Appl. Phys. 114(8), 083511 (2013).

    Article  ADS  Google Scholar 

  6. S. I. Ashitkov, M. B. Agranat, G. I. Kanel, et al., “Behavior of Aluminum near an Ultimate Theoretical Strength in Experiments with Femtosecond Laser Pulses,” Pis’ma Zh. Eksp. Teor. Fiz. 92(8), 568–573 (2010). [JETP Lett. (Engl. Transl.) 92 (8), 516–520 (2010)].

    Google Scholar 

  7. R. F. Smith, J. H. Eggert, R. E. Rudd, et al., “High Strain-Rate Plastic Flow in Al and Fe,” J. Appl. Phys. 110(12), 123515 (2011).

    Article  ADS  Google Scholar 

  8. G. E. Norman and V. V. Stegailov, “Stochastic Theory of the Classical Molecular Dynamics Method,” Mat. Modelirovanie 24(6), 3–44 (2012) [Math. Models Comput. Simul. (Engl. Transl.) 5 (4), 305–333 (2013)].

    MATH  Google Scholar 

  9. M. S. Daw, S. M. Foiles, and M. I. Baskes, “EAM: A Review of Theory and Application,” Mater. Sci. Rep. 9, 251 (1992).

    Article  Google Scholar 

  10. X. -Y. Liu, X. Wei, S. M. Foiles, and J. B. Adams, “Atomistic Studies of Segregation and Diffusion in Al-Cu Grain Boundaries,” Appl. Phys. Lett. 72(13), 1578 (1998).

    Article  ADS  Google Scholar 

  11. F. Apostol and Y. Mishin, “Interatomic Potential for the Al-Cu System,” Phys. Rev. B 83, 054116 (2011).

    Article  ADS  Google Scholar 

  12. S.V. Starikov, Z. Insepov, J. Rest, et al., “Radiation-Induced Damage and Evolution of Defects in Mo,” Phys. Rev. B 84(10), 104109 (2011).

    Article  ADS  Google Scholar 

  13. M. I. Mendelev, S. Han, D. J. Srolovitz, et al., “Development of New Interatomic Potentials Appropriate for Crystalline and Liquid Iron,” Phil. Mag. 83, 3977 (2003).

    Article  ADS  Google Scholar 

  14. A. Yu. Kuksin and A. V. Yanilkin, “Atomistic Simulation of the Motion of Dislocations in Metals under Phonon Drag Conditions,” Fiz. Tverd. Tela 55(5), 931–939 (2013) [Phys. Solid State (Engl. Transl.) 55 (5), 1010–1119 (2013)].

    Google Scholar 

  15. S. J. Plimpton, “Fat Parallel Algorithms for Short-Range Molecular Dynamics,” J. Comput. Phys. 117, 1 (1995).

    Article  ADS  MATH  Google Scholar 

  16. F.W. Gayle and M. Goodway, “Precipitation Hardening in the First Aerospace Aluminum Alloy: The Wright Flyer Crankcase,” Science 266, 1015 (1994).

    Article  ADS  Google Scholar 

  17. A. Yu. Kuksin, V. V. Stegailov, and A. V. Yanilkin, “Molecular-Dynamics Simulation of Edge-Dislocation Dynamics in Aluminum,” Dokl. Ross. Akad. Nauk 420, 467–471 (2008) [Dokl. Phys. (Engl. Transl.) 53 (6), 287–291 (2008)].

    Google Scholar 

  18. A. V. Yanilkin, V. S. Krasnikov, A. Yu. Kuksin, and A. E. Mayer, “Dynamics and Kinetics of Dislocations in Al and Al-Cu Alloy under Dynamic Loading,” Int. J. Plasticity 55, 94–107 (2014).

    Article  Google Scholar 

  19. M. Itakura, H. Kaburaki, and M. Yamaguchi, “First-Principles Study on the Mobility of Screw Dislocations in BCC Iron,” Acta Mater. 60, 3698–3710 (2012).

    Article  Google Scholar 

  20. M. R. Gilbert, P. Schuck, B. Sadigh, and J. Marian, “Free Energy Generalization of the Peierls Potential in Iron,” Phys. Rev. Lett. 111, 095502 (2013).

    Article  ADS  Google Scholar 

  21. T. D. Swinburne, S. L. Dudarev, S. P. Fitzgerald, et al., “Theory and Simulation of the Diffusion of Kinks on Dislocations in BCC Metals,” Phys. Rev. B 87, 064108 (2013).

    Article  ADS  Google Scholar 

  22. T. Suzuki, S. Takeuchi, and H. Yoshinaga, Dislocation Dynamics and Plasticity (Springer-Verlag, 1985; Mir, Moscow, 1989).

    Google Scholar 

  23. D. L. Olmsted, L. G. Hector, Jr., W. A. Gurtin, and R. J. Clifton, “Atomistic Simulatios of Dislocation Mobilityin Al, Ni, and Al/Mg Alloys,” Model. Simul. Mater. Sci. Engng 13, 371–378 (2005).

    Article  ADS  Google Scholar 

  24. K. Tapasa, D. J. Bacon, and Yu. N. Osetsky, “Computer Simulation of Dislocation-Solute Interaction in Dilute Fe-Cu Alloys,” Model. Simul. Mater. Sci. Engng 14, 1153 (2006).

    Article  ADS  Google Scholar 

  25. G. V. Garkushin, S. V. Razorenov, and G. I. Kanel, “Submicrosecond Strength of the D16T Aluminum Alloy at Room and Elevated Temperatures,” Fiz. Tverd. Tela 50(5), 805–811 (2008) [Phys. Solid State (Engl. Transl.) 50 (5), 839–843 (2008)].

    Google Scholar 

  26. R. K. Rajgarhia, D. E. Spearot, and A. Saxena, “Heterogeneous Dislocation Nucleation in Single Crystal Copper-Antimony Solid-Solution Alloys,” Model. Simul. Mater. Sci. Engng 17(5), 055001 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Kuksin.

Additional information

Original Russian Text © A.Yu. Kuksin, A.V. Yanilkin, 2015, published in Izvestiya Akademii Nauk. Mekhanika Tverdogo Tela, 2015, No. 1, pp. 54–62.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuksin, A.Y., Yanilkin, A.V. Dislocation nucleation and motion in metals and alloys at high-rate deformation: Molecular dynamic simulation. Mech. Solids 50, 44–51 (2015). https://doi.org/10.3103/S0025654415010057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654415010057

Keywords

Navigation