Skip to main content
Log in

Mathematical models of thermomechanics of a relaxing solid

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

Mathematical models of thermomechanic processes based on the laws of rational thermodynamics of irreversible processes are considered. Specific characteristics of the continuum nonstationary behavior are shown in the framework of variousmodels of a medium with internal state parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Zarubin and G.N. Kuvyrkin, Mathematical Models in Continuum Mechanics and Electrodynamics (Izd-vo MGTU im. Baumana, Moscow, 2008) [in Russian].

    Google Scholar 

  2. V. S. Zarubin and G. N. Kuvyrkin, “A ThermomechanicalModel of a Relaxing Solid Body Subjected to Time-Dependent Loading,” Dokl. Ross. Akad. Nauk 345(2), 193–195 (1995) [Dokl. Phys. (Engl. Transl.) 40 (11), 600–602 (1995)].

    Google Scholar 

  3. V. S. Zarubin and G. N. Kuvyrkin, “Mathematical Modeling of Thermomechanical Processes under Intense Thermal Effect,” Teplofiz. Vysokikh Temp. 41(2), 300–309 (2003) [High Temp. (Engl. Transl.) 41 (2), 252–256 (2003)].

    Google Scholar 

  4. V. S. Zarubin and G. N. Kuvyrkin,Mathematical Models of Thermomechanics (Fizmatlit, Moscow, 2002) [in Russian].

    Google Scholar 

  5. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics. Statistical Physics (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  6. L. H. Van Vleck, Elements of Material Science and Engineering (Pearson Education, India, 1959; Atomizdat, Moscow, 1975).

    Google Scholar 

  7. V. A. Likhachev, S. L. Kuz’min, and Z. P. Kamentseva, Shape Memory Effect (Izd-vo LGU, Leningrad, 1987) [in Russian].

    Google Scholar 

  8. K. Otsuka, K. Simidzu, Yu. Sudzuki, et al., Alloys with Shape Memory Effect (Metallurgiya, Moscow, 1990) [in Russian].

    Google Scholar 

  9. G. N. Kuvyrkin and I. S. Rodikova, “Thermomechanic Model of Behavior of Metals and Alloys in the Phase Transition Region,” Vest. MGTU im. Baumana. Ser. Estestv. Nauki, No. 1, 65–76 (2006).

  10. G. N. Kuvyrkin and I. S. Rodikova, “Estimation of Thermomechanic Properties of Metals and Alloys in the Phase Transition Region,” Vest. MGTU im. Baumana. Ser. Estestv. Nauki, No. 2, 31–44 (2006).

  11. R. A. Arutyunyan, “Possibilities of Sinenergetic Methods in Fracture Mechanics,” in Contemporary Problems of Strength. Scientific Proc. of 5th Intern. V. A. Likhachev Seminar, Vol. 1 (Novgorod, 2001), pp. 332–337 [in Russian].

    Google Scholar 

  12. R. A. Andrievskii and A. V. Rigulya, Nanostructure Materials (Izdat. Center “Akademiya”, Moscow, 2005) [in Russian].

    Google Scholar 

  13. A. I. Gusev, Nanomaterials, Nanostructures, Nanotechnologies (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  14. M. J. Biercuk, M. C. Liaguno, M. Radosavljevic, et al., “Carbon Nanotube Composites for Thermal Management,” Appl. Phys. Lett. 80(15), 2767–2769 (2002).

    Article  ADS  Google Scholar 

  15. V. S. Zarubin, Applied Problems of Thermal Strength of Structural Elements (Mashinostroenie, Moscow, 1985) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Zarubin.

Additional information

Original Russian Text © V.S. Zarubin, G.N. Kuvyrkin, 2012, published in Izvestiya Akademii Nauk. Mekhanika Tverdogo Tela, 2012, No. 2, pp. 114–124.

About this article

Cite this article

Zarubin, V.S., Kuvyrkin, G.N. Mathematical models of thermomechanics of a relaxing solid. Mech. Solids 47, 252–260 (2012). https://doi.org/10.3103/S0025654412020124

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654412020124

Keywords

Navigation