Skip to main content
Log in

On the correspondence between the three- and four-dimensional parameters of the three-dimensional rotation group

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

A fundamental kinematic theorem due to Euler permits synthesizing a series of three- and four-dimensional orientation parameters that correspond to each other in spaces of the same dimension.

We use the theorem about the homeomorphism of two topological spaces (the three-dimensional sphere S 3R 4 with a single punctured (removed) point and the three-dimensional space R 3) to establish a one-to-one mutually continuous correspondence between the four- and three-dimensional kinematic parameters prescribed in these spaces. The latter can be proved using the stereographic projection of points of the sphere S 3 onto the hyperplane R 3. For the normalized (Hamiltonian) Rodrigues-Hamilton parameters, we present a method of stereographic projection of a point belonging to the three-dimensional sphere S 3 onto the oriented space R 3. We present a family of local kinematic parameters obtained by the method of mapping four symmetric kinematic parameters of the space R 4 onto the oriented real space R 3.

In contrast to the well-known four symmetric global parameters of the Rodrigues-Hamilton orientation, the synthesized three-dimensional orientation parameters are local (have two singular points ±360°). The differential equations of rotation in the three-dimensional orientation parameters are obtained by the projection method.

We present the three-dimensional parameters corresponding to the classical Hamiltonian quaternions defined in the four-dimensional vector space R 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Ph. Zhuravlev, Foundations of Theoretical Mechanics (Nauka, Fizmatlit, Moscow, 1997) [in Russian].

    MATH  Google Scholar 

  2. R. Penrose and W. Rindler, Spinors and Space-Time (Cambrige University press, Cambridge, 1986; Mir, Moscow, 1987).

    Google Scholar 

  3. H. Goldstein, Classical Mechanics (Addison-Wesley, Cambridge, 1951; Gostekhizdat, Moscow, 1957).

    MATH  Google Scholar 

  4. E. T. Whittaker, Analytical Dynamics (Gostekhizdat, Moscow-Leningrad, 1937) [in Russian].

    MATH  Google Scholar 

  5. J. L. Synge, Classical Dynamics (Springer-Verlag, Berlin, 1960; Fizmatgiz, Moscow, 1963).

    Google Scholar 

  6. A. Yu. Ishlinskii, Orientation, Gyroscopes, and Inertial Navigation (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  7. A. I. Lurie, Analytic Mechanics (Fizmatgiz, Moscow, 1961; Springer, Berlin, 2001).

    Google Scholar 

  8. S.M. Onishchenko, The Use of Hypercomplex Numbers in Inertial Navigation Theory (Naukova Dumka, Kiev, 1983) [in Russian].

    Google Scholar 

  9. V. N. Branets and I. P. Shmyglevskii, Application of Quaternions to Rigid Body Orientation Problems (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  10. S. N. Kirpichnikov and V. S. Novoselov, Mathematical Aspects of Kinematics of Solids (Izd-vo LGU, Leningrad, 1986) [in Russian].

    Google Scholar 

  11. A. P. Panov, Mathematical Foundations of Theory of Inertial Orientation (Naukova Dumka, Kiev, 1995) [in Russian].

    Google Scholar 

  12. B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry. Methods and Applications (Nauka, Moscow, 1986; Springer, New York, 1990).

    MATH  Google Scholar 

  13. J. Stuelpnagel, “On the Parametrization of the Three-Dimensional Rotation Group,” SIAM REV. 6(4), 422–429 (1964).

    Article  MATH  MathSciNet  Google Scholar 

  14. L. S. Pontryagin, Continuous Groups (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  15. E.M. Cartan, The Theory of Spinors (MIT Press, Cambridge, 1946; Izd-vo Inostr. Lit., Moscow, 1947).

    Google Scholar 

  16. B. L. Van der Warden, Algebra (Frederick Ungar, New York, 1970; Nauka, Moscow, 1979).

    Google Scholar 

  17. A. N. Kolmogorov and S. V. Fomin, textitElements of the Theory of Functions and Functional Analysis (Nauka, Moscow, 1976; Dover Publications, New York, 1999).

    Google Scholar 

  18. F. R. Gantmakher, Theory of Matrices (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  19. I. L. Kantor and A. S. Solodovnikov, Hypercomplex Numbers (Nauka, Moscow, 1973) [in Russian].

    MATH  Google Scholar 

  20. V. I. Smirnov, A Course of Higher Mathematics (Gostekhizdat, Moscow, 1956), Vol. 1, Part 1 [in Russian].

    Google Scholar 

  21. H. J. Marcelo and D. T. Vassilios, “Singularities of Euler and Roll-Pitch-Yaw Representations,” IEEE Trans. on Aerospace and Electronic Systems 19(1), 59–69 (1987).

    Google Scholar 

  22. J. L. Junkins and M. D. Shuster, “The Geometry of the Euler Angles,” J. Astonaut. Sci. 41(4), 531–543 (1993).

    MathSciNet  ADS  Google Scholar 

  23. J. E. Bortz, “A New Mathematical Formulation for Strapdown Inertial Navigation,” IEEE Trans. on Aerospace and Electronic Systems 7(1), 61–66 (1971).

    Article  ADS  Google Scholar 

  24. S. E. Perelyaev, 3D Parametrization of the Rigid Body Rotation Group in Systems of Gyroscopic Orientation,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 3, 19–31 (2003) [Mech. Solids (Engl. Transl.) 38 (3), 12–21 (2003)].

  25. S. E. Perelyaev, “On the Global Parametrizations of a Group of 3D Rotations,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 3, 30–44 (2006) [Mech. Solids (Engl. Transl.) 41 (3), 23–33 (2006)].

  26. G. Korn and T. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1968; Nauka, Moscow, 1977).

    Google Scholar 

  27. T. Troilo, “Several Theorems about Precession Motions and Regular Precession,” Mechanics. Periodic Collection of Translations of Foreign Papers, No. 5 (141), 43–47 (1973).

  28. P. Tsiotras and J. M. Longuski, “A New Parametrizations of the Attitude Kinematics,” J. Astonaut. Sci. 43(3), 243–262 (1995).

    MathSciNet  Google Scholar 

  29. M. D. Shuster, “A Survey of Attitude Representations,” J. Astonaut. Sci. 41(4), 439–517 (1993).

    MathSciNet  ADS  Google Scholar 

  30. S. R. Marandi and V. J. Modi, “A Preferred Coordinate System and the Associated Orientation Representation in Attitude Dynamics,” Acta Astonaut. 15(11), 833–843 (1987).

    Article  MATH  ADS  Google Scholar 

  31. Yu. N. Chelnokov, Quaternion and Biquaternion Models and Methods of Mechanics of Solids and Their Applications (Nauka, Fizmatlit, Moscow, 2006) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Perelyaev.

Additional information

Original Russian Text © S.E. Perelyaev, 2009, published in Izvestiya Akademii Nauk. Mekhanika Tverdogo Tela, 2009, No. 2, pp. 47–58.

About this article

Cite this article

Perelyaev, S.E. On the correspondence between the three- and four-dimensional parameters of the three-dimensional rotation group. Mech. Solids 44, 204–213 (2009). https://doi.org/10.3103/S0025654409020058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654409020058

Keywords

Navigation