Skip to main content
Log in

On electromagnetic radiation under destruction of ultrathin glass fibers

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

We study how the characteristics of electric signals emitted in the course of vibrations and fracture of ultrathin fibers under tension depend on the geometric parameters and physical properties of the fibers. A unique highly sensitive experimental plant was developed, and glass fibers of diameter 6.5, 10, 18, 150µm, as well as polyethylene fibers of thickness 0.2–0.06mm, were tested. It turned out that the signals emitted by fracture of fibers made of different dielectric materials (d < 20µm) are qualitatively the same in shape and have a negative phase of length 100–400µs and a much longer positive phase. An electric signal induced by a fiber thinner than a human hair by an order of magnitude was recorded for the first time. Unexpectedly, the average values of amplitudes of signals for fibers significantly different in diameter turned out to be close to each other. This can be explained by the well-known fact that the number of fragments in fracture increases with the glass strength (a scale effect). The potentialities of the method for measuring electric signals in studying the spectra of fiber vibrations were discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Caffyn and T. L. Goodfollew, “Electrical Effects Associated with the Mechanical Deformation of Single Crystals of Alkali Halides,” Nature 176(4488), 878–879 (1955).

    Article  ADS  Google Scholar 

  2. A. A. Urusovskaya, “Electric Effects Associated with Plastic Deformation of Ionic Crystals,” Uspekhi Fiz. Nauk 96(1), 39–60 (1968). [Sov. Phys. Usp. (Engl. Transl.) 11 (5), 631–643 (1969)].

    Google Scholar 

  3. S. C. Langford and J. T. Dickinson, ASC/Symo. Ser. 415, 224–246 (1987).

    Google Scholar 

  4. Y. Enomoto and H. Hashimoto, “Emission of Charged Particles from Indentation Fracture of Rocks,” Nature 346(6285), 641–643 (1990).

    Article  ADS  Google Scholar 

  5. J. Goldbaum, V. Frid, D. Bahat, and A. Rabinovich, “An Analysis of Complex Electromagnetic Radiation Signals Induced by Fracture,” Measurement Sci. Technol. 14, 1839–1844 (2003).

    Article  ADS  Google Scholar 

  6. V. Frid, A. Rabinovich, and D. Bahat, “Fracture Induced Electromagnetic Radiation,” J. Phys. D: Appl. Phys., No. 13, 1620–1628 (2003).

  7. V. N. Mineev and A. G. Ivanov, “Electromotive Force Produced by Shock Compression of a Substance,” Uspekhi Fiz. Nauk 119(1), 75–109 (1976). [Sov. Phys. Usp. (Engl. Transl.) 19 (5), 400–419 (1976)].

    Google Scholar 

  8. Yu. K. Bivin, V. V. Viktorov, and A. S. Chursin, “Electromagnetic Radiation under Mechanical Strain of Bodies,” in Annotations of Reports at 5th All-Union Conference in Theoretical and Applied Mechancis (Nauka, Alma-Ata, 1981) [in Russian].

    Google Scholar 

  9. Yu. K. Bivin, V.V. Viktorov, Yu. V. Kulinich, and A. S. Chursin, “Electromagnetic Radiation under Dynamical Strain of Different Materials,” Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 1, 183–186 (1982) [Mech. Solids (Engl. Transl.)].

  10. V. Ph. Zhuravlev, “Electromagnetic Radiation upon Collision of Solids,” Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 6, 101–103 (1985) [Mech. Solids (Engl. Transl.) 20 (6), 101–104 (1985)].

  11. E. A. Devyatkin, “Electron-Inertial Experiments with Impacting Rod,” Pis’ma Zh. Tekhn. Fiz. 16(3), 51–55 (1990) [Sov. Tech. Phys. Lett. (Engl. Transl.)].

    Google Scholar 

  12. E. A. Devyatkin, “On Electron-Inertial Experiment under Dynamical Strain of Conductors,” Pis’ma Zh. Tekhn. Fiz. 17(9), 6–11 (1991) [Sov. Tech. Phys. Lett. (Engl. Transl.)].

    ADS  Google Scholar 

  13. M. Ya. Balbachan and E. I. Parkhomenko, “Electret Effect during Rupture of Rocks,” Izv. Akad.Nauk SSSR. Fiz. Zemli, No. 8, 104–108 (1983) [Izv. Phys. Solid Earth (Engl. Transl.) 19, 661–665 (1983)].

  14. A. Misra, “Electromagnetic Effects at the Metallic Fracture,” Nature 254(5496), 133–134 (1975).

    Article  Google Scholar 

  15. A. Misra, “Theoretical Study of the Fracture Induced Magnetic Effects in Ferromagnetic Materials,” Phys. Lett. 62A(4), 234–236 (1977).

    Google Scholar 

  16. A. Misra, “Physical Model for the Stress-Induced Magnetic Effect in Metals,” Appl. Phys. 16(2), 195–199 (1978).

    Article  ADS  Google Scholar 

  17. A. Misra and A. Kumar, “Some Basic Aspects of Electromagnetic Radiation during Crack Propagation in Metals,” Intern. J. Fract. 127(4), 387–401 (2004).

    Article  Google Scholar 

  18. Yu. I. Novikov and F. I. Polovikov, “On Electric Charges Induced by Compression Strain in Polymetile metakrilate,” Fiz. Tverd. Tela 8(5), 1562–1568 (1966) [Sov. Phys. Solid State (Engl. Transl.) 8 (5), 1240 (1966)].

    Google Scholar 

  19. M. I. Molotskii, “Dislocation Mechanism of the Misra Effect,” Pis’ma Zh. Tekhn. Fiz. 6(1), 52–55 (1980) [Sov. Tech. Phys. Lett. (Engl. Transl.)].

    Google Scholar 

  20. V. M. Finkel, Yu. I. Golovin, V. E. Sereda, et al., “Electric Effects at Fracture of LiF Crystals in Connection with the Crack Control Problem,” Fiz. Tverd. Tela 17(3), 770–776 (1975) [Sov. Phys. Solid State (Engl. Transl.) 17 (3), 492–495 (1975)].

    Google Scholar 

  21. N. I. Gershenzon, D. O. Zilpimiani, P. V. Manguladze, et al., “Electromagnetic Radiation of the Crack Vertex during Fracture of Ion Crystals,” Dokl. Akad. Nauk SSSR 288(1), 75–78 (1986).

    Google Scholar 

  22. S. G. O’Keefe and D. V. Thiel, “A Mechanism for the Production of Electromagnetic Radiation during Fracture of Brittle Materials,” Phys. Earth and Planet. Interiors 89(1–2), 127–135 (1995).

    Article  ADS  Google Scholar 

  23. O. I. Fal’kovskii, Technical Electrodynamics (Svyaz’, Moscow, 1978) [in Russian].

    Google Scholar 

  24. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941; Gostekhizdat, Moscow-Leningrad, 1948).

    MATH  Google Scholar 

  25. J. Jackson, Classical Electrodynamics (Wiley, New York, 1962; Mir,Moscow, 1965).

    Google Scholar 

  26. J.W. Obreinov, “The Splitting Strength of Mica,” Proc. Roy. Soc. London Ser. A127(805), 290–297 (1930).

    Article  ADS  Google Scholar 

  27. E. A. Devyatkin, “On the Possibility of Using the Electric Field Potential Variation Induced by Metal Strains to Estimate the Internal Stresses,” in Materials of 3rd All-Union Symposium “Technological Residual Stresses” (1988), pp. 142–146.

  28. M. I. Miroshnichenko and V. S. Kuksenko, “Emission of Electromagnetic Pulses during Nucleation of Cracks in Solid Insulators,” Fiz. Tverd. Tela 22(5), 1531–1533 (1980). [Sov. Phys. Solid State (Engl. Transl.) 22 (5), 895–896 (1980)].

    Google Scholar 

  29. S. S. Solntsev and E.M. Morozov, Fracture of Glass (Mashinostroenie, Moscow, 1978) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Devyatkin.

Additional information

Original Russian Text © E.A. Devyatkin, I.V. Simonov, A.A. Sirotin, 2009, published in Izvestiya Akademii Nauk. Mekhanika Tverdogo Tela, 2009, No. 1, pp. 154–164.

About this article

Cite this article

Devyatkin, E.A., Simonov, I.V. & Sirotin, A.A. On electromagnetic radiation under destruction of ultrathin glass fibers. Mech. Solids 44, 131–140 (2009). https://doi.org/10.3103/S0025654409010142

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654409010142

Keywords

Navigation