Araştırma Makalesi
BibTex RIS Kaynak Göster

Bor karbür tozu üretiminde farklı karbon kaynaklarının faz oluşumu ve mikroyapı üzerindeki etkisi

Yıl 2019, Cilt: 4 Sayı: 2, 67 - 76, 30.06.2019
https://doi.org/10.30728/boron.467351

Öz

Bu çalışmada, bor oksit ve farklı karbon kaynaklarından hareketle bor karbür tozu üretimi amaçlanmıştır. Hammadde olarak, B2O3 ve grafit ya da aktif karbon kullanılmış olup, toz karışımları bilyalı değirmende mekanik olarak aktive edilmiştir. Mekanik olarak aktive edilen tozlar, hidrolik preste peletler haline getirilmiş ve Ar atmosferi altında 1450°C’de reaksiyona tabi tutulmuştur. Öğütme süresi/hızı, reaksiyon süresi, başlangıç toz miktarları ve farklı karbon kaynaklarının son ürün verimi ve faz yapısı üzerindeki etkisi incelenmiştir. Elde edilen toz ürünlerin karakterizasyonu, XRD, SEM ve organik element analizi yöntemleri ile gerçekleştirilmiştir. Öğütme ve presleme işlemleri sayesinde, son ürün yapısındaki kalıntı karbon miktarı önemli ölçüde azaltılmış ve teorik oluşum sıcaklığı 1360°C’ye kadar düşürülmüştür. Optimum koşullarda elde edilen tozlar, yapısında en fazla % 4 kalıntı karbon içeren ve ortalama 10 µm partikül boyutuna sahip saf bor karbür tozlarıdır.  

Kaynakça

  • [1] Thevenot F., Boron carbide-a comprehensive review, J. Eur. Ceram. Soc., 6 (4), 205-225, 1990.
  • [2] Suri A. K., Subramanian C., Sonber J. K., Murthy T. C., Synthesis and consolidation of boron carbide: A review, Int. Mater. Rev., 55 (1), 4-40, 2010.
  • [3] Krutskii Y. L., Bannov A. G., Synthesis of boron carbide fine powder using carbon nanofibers. In Strategic Technology (IFOST), 2016 11th International Forum on (pp. 54-57). IEEE, 2016.
  • [4] Serebryakova T. I., Neronov V. A., Peshev P. D., HighTemperature Borides, Мoscow: Metallurgiya, Chelyabinsk Branch, 1991.
  • [5] Kislyi P. S., Kuzenkova M. A., Bodnaruk N. I., Grabchuk B. L., Boron carbide. Naukova Dumka, Kiev, 216, 1988.
  • [6] Kremenchugskii M. V., Savkin G. G., Malinov N. I., Rachkovskii A. I., Smorchkov G. Y., Superlight ceramic armored protected materials synthesized by means of nanostructure mechanoactived boron carbide powders, Nanotechnol. Russ., 3 (3-4), 141-146, 2008.
  • [7] Yamada S., Hirao K., Yamauchi Y., Kanzaki, S., Mechanical and electrical properties of B4C–CrB2 ceramics fabricated by liquid phase sintering, Ceram. Int., 29 (3), 299-304, 2003.
  • [8] Foroughi P., Cheng Z., Understanding the morphological variation in the formation of B4C via carbothermal reduction reaction, Ceram. Int., 42 (14), 15189-15198, 2016.
  • [9] Murray P., Low temperature synthesis of boron carbide using a polymer precursor powder route (Doctoral dissertation, University of Birmingham), 2013.
  • [10] Benton S. T., Masters, D. R., U.S. Patent No. 3,914,371, Washington, DC: U.S. Patent and Trademark Office, 1975.
  • [11] Weimer A. W., Roach R. P., Haney C. N., Moore W. G., Rafaniello, W., Rapid carbothermal reduction of boron oxide in a graphite transport reactor. AIChE journal, 37 (5), 759-768, 1991.
  • [12] Weimer A. W., Moore W. G., Roach R. P., Hitt J. E., Dixit R. S., Pratsinis S. E., Kinetics of carbothermal reduction synthesis of boron carbide, J. Am. Ceram. Soc., 75 (9), 2509-2514, 1992.
  • [13] Foroughi P., Cheng Z., From micron-sized particles to nanoparticles and nanobelts: Structural non-uniformity in the synthesis of boron carbide by carbothermal reduction reaction, Advances in Ceramic Armor XI, 600, 51, 2015.
  • [14] Hadian A. M., Bigdeloo J. A., The effect of time, temperature and composition on boron carbide synthesis by sol-gel method, J. Mater. Eng. Perform., 17 (1), 44-49, 2008.
  • [15] Singh P., Singh B., Kumar M., Kumar, A., One step reduction of boric acid to boron carbide nanoparticle, Ceram. Int., 40 (9), 15331-15334, 2014.
  • [16] Gao S., Li X., Wang S., Xing P., Kong J., Yang G., A low cost, low energy, environmentally friendly process for producing high-purity boron carbide, Ceramics International 45, 3101–3110, 2019.
  • [17] Sivkov A., Rakhmatullin H., Shanenkov I., Shanenkova Y., Boron carbide B4C ceramics with enhanced physico-mechanical properties sintered from multimodal powder of plasma dynamic synthesis, Int. J. Refract. Met. Hard Mater, 78, 85–91, 2019.
  • [18] Vijay S. K., Krishnaprabhu R., Chandramouli V., Anthonysamy S., Synthesis of nanocrystalline boron carbide by sucrose precursor methodoptimization of process conditions, Ceram. Int. 44, 4676–4684, 2018.
  • [19] Yılmaz D., Koç N., Turan S., Yerli borik asitten kalıntı karbon içermeyen bor karbür sentezi, AKÜ FEMÜBİD 18, 015701, 306-314, 2018.
  • [20] Sheng Y., Li G., Meng H., Han Y., Xu Y., Wu J., Zhang, X., An improved carbothermal process for the synthesis of fine-grained boron carbide microparticles and their photoelectrocatalytic activity, Ceram. Int., 44 (1), 1052-1058, 2018.
  • [21] Balcı Ö., Ağaoğulları D., Ovalı D., Öveçoğlu M.L., Duman İ., In situ synthesis of NbB2–NbC composite powders by milling-assisted carbothermal reduction of oxide raw materials, Adv. Powder Technol. 26, 1200– 1209, 2015.
  • [22] Ahmed S.A.S., El Enin R.M.M.A., El Nabarawy T., Adsorption properties of activated carbon prepared from pre-carbonized petroleum coke in the removal of organic pollutants from aqueous solution, Carbon Letters, 12, (3) 152-161, 2011.
  • [23] Alizadeh A., Taheri Nassaj E., Ehsani N., Baharvandi H.R., Production of boron carbide powder by carbothermic reduction from boron oxide and petroleum coke or carbon active, Adv. Appl. Ceram., 105 (1), 291-296, 2006.
  • [24] Cicek B. Karaahmet O., Bor Karbür ve Düşük Sıcaklık Bor Karbür Sentezleme Yöntemleri, Nobel Akademik Yayıncılık, 2018.
  • [25] Alizadeh A., Taheri, E., Ehsani boron carbide by carbothermic reduction method, J. Eur. Ceram. Soc. 24, (3) 3227-3234, 2004.

The effect of different carbon sources on the phase formation and microstructure of boron carbide powders

Yıl 2019, Cilt: 4 Sayı: 2, 67 - 76, 30.06.2019
https://doi.org/10.30728/boron.467351

Öz

The objective of this study is to synthesize boron carbide powders starting with boron oxide (B2O3) and varying carbon sources such as graphite and activated carbon by using carbothermal method. Powder mixtures are mechanically activated with ball mill, pelletized in cold hydraulic press and reacted under Argon atmosphere at 1450°C. Milling speed and time; reaction duration; varying carbon source and the ratio of the starting materials are experimented to observe the results upon the phase structure and the yield of the B4C. The product characterization is carried out via XRD, SEM, particle size analyzer and organic elemental analysis methods. Mechanical pretreatment significantly reduces the amount of the unreacted carbon and lowers the reaction temperature down to 1360°C. Under the optimum conditions, the yield contains 4 % remaining carbon and approximately 10 µm boron carbide particles. 

Kaynakça

  • [1] Thevenot F., Boron carbide-a comprehensive review, J. Eur. Ceram. Soc., 6 (4), 205-225, 1990.
  • [2] Suri A. K., Subramanian C., Sonber J. K., Murthy T. C., Synthesis and consolidation of boron carbide: A review, Int. Mater. Rev., 55 (1), 4-40, 2010.
  • [3] Krutskii Y. L., Bannov A. G., Synthesis of boron carbide fine powder using carbon nanofibers. In Strategic Technology (IFOST), 2016 11th International Forum on (pp. 54-57). IEEE, 2016.
  • [4] Serebryakova T. I., Neronov V. A., Peshev P. D., HighTemperature Borides, Мoscow: Metallurgiya, Chelyabinsk Branch, 1991.
  • [5] Kislyi P. S., Kuzenkova M. A., Bodnaruk N. I., Grabchuk B. L., Boron carbide. Naukova Dumka, Kiev, 216, 1988.
  • [6] Kremenchugskii M. V., Savkin G. G., Malinov N. I., Rachkovskii A. I., Smorchkov G. Y., Superlight ceramic armored protected materials synthesized by means of nanostructure mechanoactived boron carbide powders, Nanotechnol. Russ., 3 (3-4), 141-146, 2008.
  • [7] Yamada S., Hirao K., Yamauchi Y., Kanzaki, S., Mechanical and electrical properties of B4C–CrB2 ceramics fabricated by liquid phase sintering, Ceram. Int., 29 (3), 299-304, 2003.
  • [8] Foroughi P., Cheng Z., Understanding the morphological variation in the formation of B4C via carbothermal reduction reaction, Ceram. Int., 42 (14), 15189-15198, 2016.
  • [9] Murray P., Low temperature synthesis of boron carbide using a polymer precursor powder route (Doctoral dissertation, University of Birmingham), 2013.
  • [10] Benton S. T., Masters, D. R., U.S. Patent No. 3,914,371, Washington, DC: U.S. Patent and Trademark Office, 1975.
  • [11] Weimer A. W., Roach R. P., Haney C. N., Moore W. G., Rafaniello, W., Rapid carbothermal reduction of boron oxide in a graphite transport reactor. AIChE journal, 37 (5), 759-768, 1991.
  • [12] Weimer A. W., Moore W. G., Roach R. P., Hitt J. E., Dixit R. S., Pratsinis S. E., Kinetics of carbothermal reduction synthesis of boron carbide, J. Am. Ceram. Soc., 75 (9), 2509-2514, 1992.
  • [13] Foroughi P., Cheng Z., From micron-sized particles to nanoparticles and nanobelts: Structural non-uniformity in the synthesis of boron carbide by carbothermal reduction reaction, Advances in Ceramic Armor XI, 600, 51, 2015.
  • [14] Hadian A. M., Bigdeloo J. A., The effect of time, temperature and composition on boron carbide synthesis by sol-gel method, J. Mater. Eng. Perform., 17 (1), 44-49, 2008.
  • [15] Singh P., Singh B., Kumar M., Kumar, A., One step reduction of boric acid to boron carbide nanoparticle, Ceram. Int., 40 (9), 15331-15334, 2014.
  • [16] Gao S., Li X., Wang S., Xing P., Kong J., Yang G., A low cost, low energy, environmentally friendly process for producing high-purity boron carbide, Ceramics International 45, 3101–3110, 2019.
  • [17] Sivkov A., Rakhmatullin H., Shanenkov I., Shanenkova Y., Boron carbide B4C ceramics with enhanced physico-mechanical properties sintered from multimodal powder of plasma dynamic synthesis, Int. J. Refract. Met. Hard Mater, 78, 85–91, 2019.
  • [18] Vijay S. K., Krishnaprabhu R., Chandramouli V., Anthonysamy S., Synthesis of nanocrystalline boron carbide by sucrose precursor methodoptimization of process conditions, Ceram. Int. 44, 4676–4684, 2018.
  • [19] Yılmaz D., Koç N., Turan S., Yerli borik asitten kalıntı karbon içermeyen bor karbür sentezi, AKÜ FEMÜBİD 18, 015701, 306-314, 2018.
  • [20] Sheng Y., Li G., Meng H., Han Y., Xu Y., Wu J., Zhang, X., An improved carbothermal process for the synthesis of fine-grained boron carbide microparticles and their photoelectrocatalytic activity, Ceram. Int., 44 (1), 1052-1058, 2018.
  • [21] Balcı Ö., Ağaoğulları D., Ovalı D., Öveçoğlu M.L., Duman İ., In situ synthesis of NbB2–NbC composite powders by milling-assisted carbothermal reduction of oxide raw materials, Adv. Powder Technol. 26, 1200– 1209, 2015.
  • [22] Ahmed S.A.S., El Enin R.M.M.A., El Nabarawy T., Adsorption properties of activated carbon prepared from pre-carbonized petroleum coke in the removal of organic pollutants from aqueous solution, Carbon Letters, 12, (3) 152-161, 2011.
  • [23] Alizadeh A., Taheri Nassaj E., Ehsani N., Baharvandi H.R., Production of boron carbide powder by carbothermic reduction from boron oxide and petroleum coke or carbon active, Adv. Appl. Ceram., 105 (1), 291-296, 2006.
  • [24] Cicek B. Karaahmet O., Bor Karbür ve Düşük Sıcaklık Bor Karbür Sentezleme Yöntemleri, Nobel Akademik Yayıncılık, 2018.
  • [25] Alizadeh A., Taheri, E., Ehsani boron carbide by carbothermic reduction method, J. Eur. Ceram. Soc. 24, (3) 3227-3234, 2004.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Research Makaleler
Yazarlar

Kamil Kiraz Bu kişi benim

Özge Balcı

Özge Çoşut Bu kişi benim

Tuğhan Akbaşak Bu kişi benim

Buğra Çiçek

Mehmet Somer

Yayımlanma Tarihi 30 Haziran 2019
Kabul Tarihi 13 Mart 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 4 Sayı: 2

Kaynak Göster

APA Kiraz, K., Balcı, Ö., Çoşut, Ö., Akbaşak, T., vd. (2019). Bor karbür tozu üretiminde farklı karbon kaynaklarının faz oluşumu ve mikroyapı üzerindeki etkisi. Journal of Boron, 4(2), 67-76. https://doi.org/10.30728/boron.467351

© 2016 Her Hakkı Saklıdır.
TENMAK Bor Araştırma Enstitüsü