JNK isoforms control mammal adult hippocampal neurogenesis

Keywords: JNK, isoforms, neurogenesis, hippocampus

Abstract

In mammals, the term “adult hippocampal neurogenesis” defines the process through which, throughout adulthood, new granular neurons are produced by neural stem cells (NSC) in the subgranular zone (SGZ) in the dentate gyrus (DG) of the hippocampus or, by a population of immature neurons located in the SGZ. Either way, the existence of neurogenic activity in the hippocampus has been correlated with learning, memory formation and behavioral responses to stress, together with the pathophysiology of many brain diseases and mood disorders. Various extracellular and intracellular stimuli have been shown to modulate survival, proliferation, and differentiation of adult-born cells in the hippocampus especially, through conserved stimuli-response mechanisms like the JNKs, which have been described as regulators of adult neurogenesis. In the present review, the JNK pathway and their control of adult hippocampal neurogenesis is described, evidencing the critical role of JNK1 in this process.

Downloads

Download data is not yet available.

References

Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase: Conservation of a three-kinase module from yeast to human. Vol. 79, Physiological Reviews. 1999. p. 143–80.

Davis RJ. Signal transduction by the JNK group of MAP kinases. Vol. 103, Cell. 2000. p. 239–52.

Bogoyevitch MA, Kobe B. Uses for JNK: the Many and Varied Substrates of the c-Jun N-Terminal Kinases. Microbiol Mol Biol Rev. 2006;70(4):1061–95.

Bogoyevitch MA, Ngoei KRW, Zhao TT, Yeap YYC, Ng DCH. c-Jun N-terminal kinase (JNK) signaling: Recent advances and challenges. Biochim Biophys Acta - Proteins Proteomics. 2010;1804(3):463–75.

Yarza R, Vela S, Solas M, Ramirez MJ. c-Jun N-terminal kinase (JNK) signaling as a therapeutic target for Alzheimer’s disease. Vol. 6, Frontiers in Pharmacology. 2016.

Winchester CL, Ohzeki H, Vouyiouklis DA, Thompson R, Penninger JM, Yamagami K, et al. Converging evidence that sequence variations in the novel candidate gene MAP2K7 (MKK7) are functionally associated with schizophrenia. Hum Mol Genet. 2012;21(22):4910–21.

Kazeminasab S, Taskiran II, Fattahi Z, Bazazzadegan N, Hosseini M, Rahimi M, et al. CNKSR1 gene defect can cause syndromic autosomal recessive intellectual disability. Am J Med Genet Part B Neuropsychiatr Genet. 2018;

Coffey ET, Hongisto V, Dickens M, Davis RJ, Courtney MJ. Dual roles for c-Jun N-terminal kinase in developmental and stress responses in cerebellar granule neurons. J Neurosci [Internet]. 2000;20(20):7602–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11027220

Mohammad H, Marchisella F, Ortega-Martinez S, Hollos P, Eerola K, Komulainen E, et al. JNK1 controls adult hippocampal neurogenesis and imposes cell-autonomous control of anxiety behaviour from the neurogenic niche. Mol Psychiatry [Internet]. 2018;23(2):362–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27843149

Myers AK, Cunningham JG, Smith SE, Snow JP, Smoot CA, Tucker ES. JNK signaling is required for proper tangential migration and laminar allocation of cortical interneurons. Development [Internet]. 2020;147(2):dev180646. Available from: http://dev.biologists.org/lookup/doi/10.1242/dev.180646

Xu X, Raber J, Yang D, Su B, Mucke L. Dynamic regulation of c-Jun N-terminal kinase activity in mouse brain by environmental stimuli. Proc Natl Acad Sci U S A. 1997;

Komulainen E, Zdrojewska J, Freemantle E, Mohammad H, Kulesskaya N, Deshpande P, et al. JNK1 controls dendritic field size in L2/3 and L5 of the motor cortex, constrains soma size, and influences fine motor coordination. Front Cell Neurosci [Internet]. 2014;8:272. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25309320

Morrison DK, Davis RJ. Regulation of MAP Kinase Signaling Modules by Scaffold Proteins in Mammals. Annu Rev Cell Dev Biol [Internet]. 2003;19(1):91–118. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14570565

Miloso M, Scuteri A, Foudah D, Tredici G. MAPKs as mediators of cell fate determination: an approach to neurodegenerative diseases. Curr Med Chem [Internet]. 2008;15(6):538–48. Available from: http://www.eurekaselect.com/openurl/content.php?genre=article&issn=0929-8673&volume=15&issue=6&spage=538

Coffey ET. Nuclear and cytosolic JNK signalling in neurons. Nat Rev Neurosci [Internet]. 2014;15(5):285–99. Available from: http://www.nature.com/articles/nrn3729

Tiwari VK, Stadler MB, Wirbelauer C, Paro R, Schübeler D, Beisel C. A chromatin-modifying function of JNK during stem cell differentiation. Nat Genet. 2012;

Bogoyevitch MA, Kobe B. Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases. Microbiol Mol Biol Rev [Internet]. 2006;70(4):1061–95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17158707

Waetzig V, Zhao Y, Herdegen T. The bright side of JNKs-Multitalented mediators in neuronal sprouting, brain development and nerve fiber regeneration. Progress in Neurobiology. 2006.

Carboni L, Carletti R, Tacconi S, Corti C, Ferraguti F. Differential expression of SAPK isoforms in the rat brain. An in situ hybridisation study in the adult rat brain and during post-natal development. Brain Res Mol Brain Res [Internet]. 1998;60(1):57–68. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9748503

Lee JK, Park J, Lee YD, Lee SH, Han PL. Distinct localization of SAPK isoforms in neurons of adult mouse brain implies multiple signaling modes of SAPK pathway. Mol Brain Res. 1999;

Kuan CY, Yang DD, Samanta Roy DR, Davis RJ, Rakic P, Flavell RA. The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron. 1999;22(4):667–76.

Sabapathy K, Jochum W, Hochedlinger K, Chang L, Karin M, Wagner EF. Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK1 and JNK2. Mech Dev. 1999;89(1–2):115–24.

Chang L, Jones Y, Ellisman MH, Goldstein LSB, Karin M. JNK1 is required for maintenance of neuronal microtubules and controls phosphorylation of microtubule-associated proteins. Dev Cell. 2003;4(4):521–33.

Qu C, Li W, Shao Q, Dwyer T, Huang H, Yang T, et al. C-Jun N-terminal kinase 1 (JNK1) is required for coordination of netrin signaling in axon guidance. J Biol Chem. 2013;288(3):1883–95.

Dong C, Davis RJ, Flavell RA. MAP kinases in the immune response. Annu Rev Immunol [Internet]. 2002;20:55–72. Available from: papers://552a2601-948f-4cfc-8d7e-f763ee9d3070/Paper/p6221

Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K, et al. A central, role for JNK in obesity and insulin resistance. Nature. 2002;420(6913):333–6.

de Lemos L, Junyent F, Camins A, Castro-Torres RD, Folch J, Olloquequi J, et al. Neuroprotective Effects of the Absence of JNK1 or JNK3 Isoforms on Kainic Acid-Induced Temporal Lobe Epilepsy-Like Symptoms. Mol Neurobiol. 2018;55(5):4437–52.

Toda T, Parylak SL, Linker SB, Gage FH. The role of adult hippocampal neurogenesis in brain health and disease. Molecular Psychiatry. 2019.

Kozareva DA, Cryan JF, Nolan YM. Born this way: Hippocampal neurogenesis across the lifespan. Aging Cell [Internet]. 2019;18(5):e13007. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31298475

Hollos P, Marchisella F, Coffey ET. JNK Regulation of Depression and Anxiety. Brain Plast (Amsterdam, Netherlands) [Internet]. 2018;3(2):145–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30151339

Castro-Torres RD, Landa J, Rabaza M, Busquets O, Olloquequi J, Ettcheto M, et al. JNK Isoforms Are Involved in the Control of Adult Hippocampal Neurogenesis in Mice, Both in Physiological Conditions and in an Experimental Model of Temporal Lobe Epilepsy. Mol Neurobiol [Internet]. 2019;56(8):5856–65. Available from: http://link.springer.com/10.1007/s12035-019-1476-7

Allen E. The cessation of mitosis in the central nervous system of the albino rat. J Comp Neurol. 1912;(19):547–68.

Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol. 1965;

Gage FH, Coates PW, Palmer TD, Kuhn HG, Fisher LJ, Suhonen JO, et al. Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc Natl Acad Sci [Internet]. 1995;92(25):11879–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8524867

Palmer TD, Ray J, Gage FH. FGF-2-Responsive Neuronal Progenitors Reside in Proliferative and Quiescent Regions of the Adult Rodent Brain. Mol Cell Neurosci [Internet]. 1995;6(5):474–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8581317

Suhonen JO, Peterson DA, Ray J, Gage FH. Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo. Nature. 1996;

La Rosa C, Parolisi R, Bonfanti L. Brain Structural Plasticity: From Adult Neurogenesis to Immature Neurons. Frontiers in Neuroscience. 2020.

Brandt MD, Jessberger S, Steiner B, Kronenberg G, Reuter K, Bick-Sander A, et al. Transient calretinin expression defines early postmitotic step of neuronal differentiation in adult hippocampal neurogenesis of mice. Mol Cell Neurosci. 2003;24:603–13.

Filippov V, Kronenberg G, Pivneva T, Reuter K, Steiner B, Wang L-P, et al. Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocytes. Mol Cell Neurosci [Internet]. 2003;23(3):373–82. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1044743103000605

Fukuda S, Kato F, Tozuka Y, Yamaguchi M, Miyamoto Y, Hisatsune T. Two distinct subpopulations of nestin-positive cells in adult mouse dentate gyrus. J Neurosci [Internet]. 2003;23(28):9357–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14561863

Encinas JM, Sierra A, Valcárcel-Martín R, Martín-Suárez S. A developmental perspective on adult hippocampal neurogenesis. Int J Dev Neurosci [Internet]. 2013;31(7):640–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23588197

Kempermann G, Song H, Gage FH. Neurogenesis in the Adult Hippocampus. Cold Spring Harb Perspect Biol [Internet]. 2015;7(9):a018812. Available from: http://cshperspectives.cshlp.org/lookup/doi/10.1101/cshperspect.a018812

Gould E, Gross CG. Neurogenesis in adult mammals: some progress and problems. J Neurosci [Internet]. 2002;22(3):619–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11826089

Acsády L, Káli S. Models, structure, function: the transformation of cortical signals in the dentate gyrus. Prog Brain Res [Internet]. 2007;163:577–99. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0079612307630313

Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, et al. Dynamics of Hippocampal Neurogenesis in Adult Humans. Cell [Internet]. 2013;153(6):1219–27. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23746839

Boldrini M, Fulmore CA, Tartt AN, Simeon LR, Pavlova I, Poposka V, et al. Human Hippocampal Neurogenesis Persists throughout Aging. Cell Stem Cell. 2018;

Sorrells SF, Paredes MF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW, et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature [Internet]. 2018;555(7696):377–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29513649

Moreno-Jiménez EP, Flor-García M, Terreros-Roncal J, Rábano A, Cafini F, Pallas-Bazarra N, et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med [Internet]. 2019;25(4):554–60. Available from: http://www.nature.com/articles/s41591-019-0375-9

Seaberg RM, van der Kooy D. Adult rodent neurogenic regions: the ventricular subependyma contains neural stem cells, but the dentate gyrus contains restricted progenitors. J Neurosci [Internet]. 2002;22(5):1784–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11880507

Lazarov O, Hollands C. Hippocampal neurogenesis: Learning to remember. Prog Neurobiol [Internet]. 2016;138–140:1–18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26855369

Anacker C, Hen R. Adult hippocampal neurogenesis and cognitive flexibility - linking memory and mood. Nat Rev Neurosci [Internet]. 2017;18(6):335–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28469276

Micheli L, Ceccarelli M, D’Andrea G, Tirone F. Depression and adult neurogenesis: Positive effects of the antidepressant fluoxetine and of physical exercise. Brain Res Bull [Internet]. 2018;143:181–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30236533

Chohan MO, Li B, Blanchard J, Tung Y-C, Heaney AT, Rabe A, et al. Enhancement of dentate gyrus neurogenesis, dendritic and synaptic plasticity and memory by a neurotrophic peptide. Neurobiol Aging [Internet]. 2011;32(8):1420–34. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0197458009002723

Sun L na, Qi J shun, Gao R. Physical exercise reserved amyloid-beta induced brain dysfunctions by regulating hippocampal neurogenesis and inflammatory response via MAPK signaling. Brain Res. 2018;

Jia C, Keasey MP, Lovins C, Hagg T. Inhibition of astrocyte FAK-JNK signaling promotes subventricular zone neurogenesis through CNTF. Glia [Internet]. 2018;66(11):2456–69. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/glia.23498

Chen F. JNK-induced apoptosis, compensatory growth, and cancer stem cells. Cancer Res [Internet]. 2012;72(2):379–86. Available from: http://cancerres.aacrjournals.org/cgi/doi/10.1158/0008-5472.CAN-11-1982

Published
2020-07-05
How to Cite
Auladell, C., Castro-Torres , R. D., Busquets, O., Ettcheto, M., Camins, A., & Verdaguer, E. (2020). JNK isoforms control mammal adult hippocampal neurogenesis. Mexican Journal of Medical Research ICSA, 8(16), 5-12. https://doi.org/10.29057/mjmr.v8i16.5548