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Abstract

In this paper, we describe our solution of the Lexical Semantic Change Detection (LSCD) problem. It is based
on a Word-in-Context (WiC) model detecting whether two occurrences of a particular word carry the same meaning.
We propose and compare several WiC architectures and training schemes, and also different ways to convert WiC
predictions into final word scores estimating the degree of semantic change.

We participated in the RuShiftEval LSCD competition for the Russian language, where our model achieved
2nd best result during the competition. During post-evaluation experiments we improved the WiC model and man-
aged to outperform the best system. An important part of this paper is detailed error analysis where we study the
discrepancies between WiC predictions and human annotations and their effect on the LSCD results.
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AHHOTAN A

B 3Toii cTaThe MBI OIKMCHIBAEM Hallle PELIeHHE MPOOIeMbl OOHAPYKEHHSI CEMaHTUYECKUX CIIBUIOB 3HAYCHHUI
cioB (LSCD). Ono ocHoBano Ha monenn Word-in-Context (WiC), koTopast o JIByM BXO)KAEHHSIM OHOTO CJIOBa
OIIpEJIeNSET, UMEIOT JIM 9TH BXOXKACHHUS OHO 3Ha4YeHHe. MBI Ipe/iaraeM U CpaBHHBAEM HECKOJIBKO apXHTEKTYp U
cxem obyueHuss WiC, a Takxke pa3iaudHbie ClIoco0bl npeodpa3oBanus npeackaszanuii WiC B UTOrOBBIC OIICHKH TS
CJIOB, OTPXKAOIINE CTEIEHb UX CEMaHTHYECKOTO CJIBUTA.
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Ms1 yuactBoBanmu B copeBHoBaHuK RuShiftEval mo oOHapyKeHHIO CeMaHTHYECKHX CIBHTOB 3HAUYCHHUIl CIIOB
PYCCKOTO s13bIKa, [JIe Hallle PellieHHe 3aHsu10 20e MecTo. Ilocie 3aBepuieHs COPEeBHOBAHHS MBI YITYUIININ HaITy
Mozests WiC 1 CMOTVIM IIPEB30HTH JIyUIIyIO CUCTEMY. BaykHOM 4acThIO 9TOM CTAThH SBISETCS MOAPOOHBIH aHAIN3
OILTMOOK, B KOTOPOM MBI H3y4aeM pacXoxkAeHUs Mex Ty mporHozamu WiC 1 aHHOTaIUsIMU JIFO[IEH, a TaKKe BIHSIHHE
9THUX pacxokJeHuil Ha pesyasrarel LSCD.

KiroueBble cioBa: o0HapyKeHHE CeMaHTHYeCKUX M3MeHeHHH, XLM-R, KOHTeKCTyaan3upoBaHHbBIE BEKTOPA
CJIOB

1 Introduction

The task of Lexical Semantic Change Detection (LSCD) is to determine how senses of a particular word
changed between two time periods. The change of word senses in time is a rather complex phenomenon.
Thus, several formal settings exist for this task with different annotation schemes and quality metrics, each
having its own pros and cons. We developed our system for the RuShiftEval competition [5], where the
main goal was to rank the given test words similarly to the ranking by their gold COMPARE scores [11].
To obtain the gold COMPARE scores during the construction of the dataset, the annotators were presented
several dozen sentence pairs, each representing two occurrences of the same word, one sampled from
an old corpus and another from a new corpus. The annotators estimated the similarity of those word
occurrences in meaning on a 1-4 scale, where larger values corresponded to higher degree of similarity.
This is commonly known as the Word-in-Context (WiC) task [7]. To obtain gold COMPARE score for a
particular word, the annotations of sentence pairs containing this word were averaged.

We decided to follow the same word scoring procedure, but replaced human annotators with a WiC
model to solve the task. Our system achieved the second-best result during the competition. After the
competition, we managed to outperform the winner by improving the architecture and the training pro-
cedure of our WiC model.

Our main contributions are the following.

» An approach to the RuShiftEval LSCD task employing a WiC model is proposed. Our system imple-
menting this approach achieved the 2nd best result in the competition and outperformed the winner
after the competition.

» We proposed different architectures and training schemes of a WiC model and compared their per-
formance in the LSCD task.

* A detailed error analysis is performed, showing which distinctions between word senses a WiC
model annotates differently compared to human annotators and how it effects the final LSCD results.

2 Related work

RuShiftEval [5] is the first LSCD shared task for the Russian language. Its data annotation scheme
and metrics follow those proposed as a part of Diachronic Usage Relatedness (DURel) dataset for Ger-
man [11]. In [9] the RuSemShift dataset is introduced, which was proposed as the training and the devel-
opment set for RuShiftEval. In our work, we employed the COMPARE scores from that dataset, which
estimate the similarity in meaning between two time periods both for words and sentence pairs. We left
out other potentially useful information about the variability of meaning inside each time period. An
alternative dataset annotation procedure and metrics were proposed in SemEval-2020 Task 1 [10], where
the authors tried to account for the appearance or disappearance of relatively rare word senses, which the
COMPARE metric is not sensitive to. They basically clustered word occurrences corresponding to their
senses using human annotators instead of an automated clustering system. Based on this gold standard
clustering, two subtasks were proposed. The first subtask required binary classification determining if
the set of word senses has changed. The second subtask required ranking words according to the change
in sense frequencies.

In[9] several LSCD models are compared for the Russian language. One of them is ELMo [6], which is
arecurrent neural network trained as a language model on texts from the Russian National Corpus ! (RNC)
and used to build contextualized embeddings of target words. Then they compute the cosine similarity

"https://ruscorpora.ru
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or the Jensen-Shannon divergence to receive the semantic change score. The best quality among the
models considered by them according to the COMPARE metric is 0.403 for the first part of RuSemShift
and 0.541 for the second part. Since we have split the RuSemShift dataset into training and development
parts, our results are not directly comparable, though the experiments in Section 4 suggest that our system
significantly improves those results for RuSemShift.

Next we describe best LSCD methods proposed for the SemEval-2020 Task 1 [10].

UG Student Intern team[10] achieved the 1st place in subtask 2 (ranking). They use word2vec SGNS
word embeddings with the Orthogonal Procrustes alignment and compute Euclidean distance instead
of cosine distance to evaluate the semantic change. Unfortunately, this team did not publish a system
description paper.

Jiaxin & Jinan team [12] achieved the 3rd place in subtask 1 (binary classification) and the 2nd place
in subtask 2. They use Temporal Referencing [3] to solve the alignment problem. Instead of training two
models and then aligning, they train one model, in which the postfix ” new” is added to the target words
from the examples of the new time period, and the postfix ”_old” is added to the words from the examples
of the old time period. To get a threshold for the classification task, they fit a Gamma distribution by the
cosine distance (Gamma Quantile Threshold method). Word embeddings were extracted from fine-tuned
BERT or SGNS.

UWRB team [8] achieved the 1st place in subtask 1 and the 4th place in subtask 2. They use Canon-
ical Correlation Analysis (CCA) and modification of the Orthogonal Transformation from VecMap for
linear transformation to move from the source space (first time period) to the target space (second time
period). For word embeddings, they also employ SGNS. After a linear transformation, they calculate the
cosine similarity. They proposed different ways to find an optimal threshold based on averaging cosine
similarities for each word.

3 Semantic change detection method

To estimate the COMPARE score of a particular target word during the dataset construction, the pairs of
sentences were sampled from two time periods. For each pair of sentences, each annotator specified a
number from 1 to 4, where 1 stands for unrelated word meanings, and 4 stands for identical meanings.
Those annotations were averaged across annotators first, and then across all sentence pairs containing
the target word. To approximate this process of computing word scores, our system employs a Word-in-
Context model, which solves the same task as the annotators. The input data for this model consists of a
target word and two sentences in which the word appears. The model determines whether the target word
is used in the same sense or different senses.

First, we have built and trained a WiC model. Then for each test word we retrieved sentences containing
this word, and constructed pairs of sentences belonging to different time periods. The scores for sentence
pairs were obtained from the WiC model and aggregated into the final word scores.

3.1 Construction of WiC sentence pairs

For each test word, we retrieved the examples from the diachronic subset of the RNC corpus® (RNC).
This corpus consists of three parts: Soviet, Pre-Soviet, Post-Soviet. Since the corpus contains only plain
texts, to find examples for a particular word in all forms we used Rulemma lemmatizer>.

Next, we sampled 100 sentences (or all sentences, if there were fewer) from each time period and con-
structed sentence pairs for each pair of periods. The examples were sampled from a uniform distribution.
For each word, we removed 25% of the longest sentences, 25% of the shortest sentences, and all sen-
tences where the target word was the first or the last word. This was done based on the intuition that for
optimal WiC performance, the context shall be long enough, but not very long for faster processing, and
there shall exist some preceding and succeeding words for the target word, which often provide the most
informative context. In appendix B additional experiments with removal of short and long examples are
described.

Zhttps://ruscorpora.ru/new/en/corpora-usage.html
3https://github.com/Koziev/rulemma
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3.2 Scoring sentence pairs
3.2.1 WiC model architecture

As a backbone for our WiC model we employed the XLM-R masked language model [2], which was
pre-trained on about 2TB of texts in 100 languages. This enables us using WiC training data in different
languages, which improves the overall performance. To score each sentence pair we feed it to XLM-R
in the standard format:

<s>sentencel</s>sentence2</s>

After that we calculate the contextualized embeddings for the target word in each sentence by averaging
the outputs of the last transformer layer corresponding to all of its subwords (mean pooling). Additionally
we experimented with the first pooling when the output on the first subword is taken.

Then we aggregate two target word embeddings from two sentences using one of the following options:

1. concat: (x,y), the concatenation of two embeddings;

2. comb_dmn: (z—y, Toy), the concatenation of the difference (d) of non-normalized and component-

wise product (m) of normalized (n) embeddings;

3. dist_I1: ||z — yl|1, L1-distance between the embeddings, also known as the Manhattan distance;

4. dist_llndotn: (||z — g1, (¥, ¥)), the concatenation of L1-distance and the dot product (dot) of the

normalized (n) embeddings. The second feature is essentially the cosine similarity.

While the first two options produce high-dimensional vectors, the other two result in a vector with one
or two components only. The obtained vector is passed through a classification head, which has a dense
layer of size hs and tanh activation, followed by a linear layer, or only a linear layer (denoted as hs = 0).
For the first two aggregation options, we always used a hidden layer of the size hs = 1024 (the size of the
embeddings in large XLM-R). For the distance-based inputs we found that a linear head outperformed
non-linear one. We inserted batch normalization [4] before the first layer, which proved to be especially
efficient for L1-distance inputs.

Based on the intuition that the similarity between two-word occurrences does not depend on the or-
der of sentences in a sentence pair, we employed training time and test time augmentation. For each
example, we create an additional one by swapping two sentences. Thus, two scores were obtained for
each example. For training, we always use that augmentation since, from our preliminary experiments,
it helps for some architectures and never hurts. For inference we either take the first score (i.e. disable
test time augmentation), or average them.

3.2.2 WiC training

We also look at different ways to train the model using MCL-WiC* and RuSemShift [9] datasets. MCL-
WiIC consists of an English training set (8000 examples), multilingual development sets with both sen-
tences in one of the following languages: English, French, Russian, Arabic, Chinese (1000 ex. each), and
test sets with cross-lingual (one sentence in English, the second in another language) and multilingual
parts (1000 ex. each). RuSemShift consists of two pairs of periods: there are pairs of sentences from
pre-Soviet and Soviet periods in the first part, and Soviet and post-Soviet in the second part. We have
split each part into a train and a development subsets, ensuring there is no intersection between the target
words in those subsets (lexical split).

The weights of the pre-trained XLM-R large model were used for initialization, and then we train

model on the following datasets or their combinations.

1. MCL-WiC training set consists of the original MCL-WiC training set in English, 70% of each non-
English development set (2800 ex.) and all trial sets (72 ex.). The development set is the rest 30%
of non-English development sets (1200 ex.) and the full English development set (1000 ex.).

2. MCL-WiC en-en training set is the original MCL-WiC training set. It is used to estimate the per-
formance of a model trained only on English WiC data.

3. MCL-WiC ru-ru means that we train only on data in Russian, including 70% of the development
set and the whole test and trial sets (1708 ex. in total).

“https://github.com/SapienzaNLP/mcl-wic
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4. RuSemShift training set is combined from both training sets from our split, 3898 examples in total.
The development set consists of two parts - one for pre-Soviet and Soviet periods, another for Soviet
and post-Soviet periods.

The training process consists of one or two steps. Each step employs its own training set and loss function.
All training schemes are enumerated in Table 1. Cross entropy and mean squared error losses are denoted
as C'E and M SFE accordingly.

To employ all training data we have in Russian simultaneously, we have developed a new loss function
M S E+, which can handle both binary targets from MCL-WiC and real-valued targets from RuSemShift.
For the real-valued targets, it is equivalent to M S E loss, while for binary targets, it penalizes the predic-
tions using M SE loss only when they are outside (1,2) interval for negative examples or outside (3,4)
interval for positive. Since the labels are binary, we only know whether the meaning is similar or dif-
ferent, but do not know the exact degree of similarity, thus any prediction from the appropriate intervals
is suitable. Another option is binarizing RuSemShift and using C'E loss. Examples with scores not less
than 3 were treated as positive. For negative examples we set the threshold of 2 during the competition
and 3 in the following experiments.

Train#1 Loss#1 Train#2 Loss#2
MCL-WiC CE - -
MCL-WiC en-en CE - -
MCL-WiC ru-ru CE - -
RuSemShift MSE - -

MCL-WiC CE MCL-WiC ru-ru CE
MCL-WiC CE RuSemShift MSE or CE
MCL-WiC CE RuSemShift + MCL-WiC ru-ru | MSE+ or CE

Table 1: Training schemes. We take XLM-R pre-trained as a MLM, fine-tune it first on Train#1 with
Loss#1, and then optionally on Train#2 with Loss#2.

3.3 Scoring words

Mean. The simplest method to compute the final score for a particular word and a pair of periods is to
calculate the mean of scores for all corresponding sentence pairs. across all pairs of sentences containing
the target word for a pair of periods.

Isotonic regression (IsoReg). Depending on the loss function, the predicted scores for sentence pairs
may not be in the same range or distribution as the human scores. This may result in incorrect word
raking after simple averaging. We try to make sentence pair scores more similar to human scores by
fitting isotonic regression [1]. We feed the predicted score for a sentence pair to the isotonic regression
and get the modified score, which is then averaged across sentence pairs. Isotonic regression is trained
on sentence pairs from the training subset of RuSemShift (3989 training examples).

Linear regression (LinReg). Instead of using simple averaging of scores for sentence pairs, we can
use a trainable function to predict word scores. Input features are the mean and quartiles of scores for all
sentence pairs of a particular word and pair of periods. We trained this model on words from the training
subset of RuSemShift (69 training words). The features can be calculated both on sentence pairs from
RuSemShift, or sampled sentence pairs (LinReg_s).

4 Experiments and results

To evaluate our WiC model and select its hyperparameters, we employed two types of metrics. Spear-
man correlation between model scores and gold scores for sentence pairs from RuSemShift (sentSpear)
shows how well the model solves WiC task. Spearman correlation between the final word scores and
the gold values of the COMPARE metric (wordSpear) estimates the final performance on LSCD task.
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Both metrics are calculated on each of two development sets (devl for pre-Soviet — Soviet, dev2 for So-
viet — post-Soviet) and three test sets (p12 for pre-Soviet — Soviet, p23 for Soviet — post-Soviet, p13 for
pre-Soviet — post-Soviet). For majority of experiments we show averaged dev and a test metrics. In the
experiments with WiC model architecture and training, for evaluation we employed the same sentence
pairs that were annotated by humans, otherwise we could not calculate sentSpear. However, for the final
results in Table 2 and word scoring experiments in Section 4.3, 100 sampled pairs for each word and
pair of periods were used instead. Additionally, when training on MCL-WiC we employ accuracy on the
English dev set (en-acc), or an average accuracy over non-English dev sets (nen-acc) for early stopping.

Method/Team | Avg | p12 | p23 | p13
Best results of other teams
GlossReader (1st best result) 0.802 | 0.781 | 0.803 | 0.822
vanyatko (3rd best result) 0.720 | 0.678 | 0.746 | 0.737
Our submissions: team DeepMistake (2nd best result)
first+concat on MCLS' ¢ —RSSGeu2 2" 5Pe™ (M) LinReg 0.791 | 0.798 | 0.773 | 0.803
M1, Mean 0.789 | 0.794 | 0.773 | 0.799
M1, IsoReg 0.789 | 0.793 | 0.775 | 0.798

pl2, pl3: M2; p23: first+concat on MCLI 7~ —RSS+uMCLY 5 ™57 soReg | 0.785 | 0.773 | 0.802 | 0.780

mean-+dist_l1ndotn-hs300 on MCLEZ ¢ — RSS+ruMCLS 5,7 (M2) Mean | 0.780 | 0.773 | 0.786 | 0.780

LinReg on M1 + M2 + M3 0.780 | 0.756 | 0.772 | 0.811
p12, p13: mean+dist_I1 on MCL 2% —RSSGe%2*"5P<eT (M3) Mean

p23: first+concat on MCLZS ~ ¢ 5RSS+ruMCLY 52~ *“"5P0" Mean 0.779 | 0.749 | 0.801 | 0.788
pl2, pl3: M2; p23: max+concat on MCLCT =9 5 RSS9ev>=sentdPear N ean 0.778 | 0.779 | 0.775 | 0.779
pl12, p13: M3, LinReg*

p23: mean+comb_dmn on MCLEY ¢ —RSSeU2—5m5Pear | inReg 0.757 | 0.750 | 0.732 | 0.788

Our best models with ablation analysis

mean-+dist_l1ndotn-hs0 on MCLZ.S? ~°¢ RSSIeV2—5entESPear Neap 0.823 | 0.825 | 0.821 | 0.823
mean+dist_l1ndotn-hs0 on MCLY5 ™" —RSS+ruMCL}; %777, Mean 0.803 | 0.800 | 0.798 | 0.811
mean-+dist_l1ndotn-hs0 on MCLE % ™ “““, Mean 0.776 | 0.777 | 0.778 | 0.772
mean-+concat on MCLJ % —RSSTe0% 557" 'Mean 0.768 | 0.760 | 0.759 | 0.784
mean+concat on MCLZ % ~ ¢ —>RSS+ruMCLi§’;2E*_fE”tSPe”, Mean 0.791 | 0.790 | 0.786 | 0.797

Table 2: Evaluation and post-evaluation results. MCL is MCL-WiC, RSS is RuSemShift. LinReg*
denotes LinReg on two features only - the mean and the median. M1, M2, M3 abbreviate duplicated
WiC model specifications. LinReg on M1+M2+M3 denotes LinReg on features from all those models.
concat: (x,y), comb_dmn: (z — y, T o §), dist_I1: ||z — yl|1, dist_llndotn: (||Z — 7|1, (Z,7))

4.1 Submissions and post-competition improvements

During the evaluation phase, we made 10 submissions. Their results with the best results of other teams
are shown in Table 2. The first 2 arguments of the method name indicate which pooling and aggregation
of the two target word embeddings were used. Then the training scheme is specified with subscript and
superscript specifying loss function and early stopping metric. The word scoring method is appended
after the comma when it differs from the default mean over sentence pairs. In some submissions, for
different pairs of time periods we used predictions of different models.

After the competition, we analyzed various aggregation methods of the target word embeddings and
training options and managed to achieve better results than the winning submission for all pairs of time
periods. The best model uses dist [Indotn without hidden layer (4s0) and is trained on MCL-WiC first,
then on RuSemShift with M SE loss. From ablations we notice that the average quality is reduced by
5 points when only the first training step is left. For dist [Indotn is better to train on RuSemShift with
M SE loss than on RuSemShift+ruMCL-WiC with M S E+ loss, but for concat vice versa.

In appendix A we additionally compare the performance of our best model with human performance.
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4.2 WiC architecture and training scheme

Embeddings aggregation. To compare different methods of aggregation of target word embeddings,
we trained several WiC models on MCL-WiC, and then optionally fine-tuned them on RuSemShift with
MSE loss. For early stopping we employed nen-acc on the first dataset and dev2-sentSpear on the second.
We used mean pooling for subwords and also Mean aggregation of scores for sentence pairs.

dataset = dev_avg | metric = wordSpear dataset = dev_avg | metric = sentSpear

MCL-WiC

train->finetune

MCL-WiC->RuSemShift

target_emb

mmm  dist_|1ndotn-hs=300

04 05 06 07 08 040 045 050 055 0.60 0.65 e dist I1ndotn-hs=0

N

dataset = test_avg | metric = wordSpear dataset = test_avg | metric = sentSpear ™™ dist_|1-hs=300
mmm  dist_|1-hs=0
s concat

MCL-WiC mmm comb_dmn

train->finetune

MCL-WiC->RuSemShift

N
iN

0.5 0.6 0.7 0.45  0.50
value value

o
®
N
N
o
I
w
o

0.60  0.65

Figure 1: Comparison of the target embedding aggregations. Values are sentSpear (left) and wordSpear
(right) on dev (up) and test (down).

Figure 1 shows that the best methods of combining two embeddings of the target word are
dist_llndotn either with dense layer size hs = 300 or without dense layer. Generally, training on
RuSemShift after training on MCL-WiC improves performance a bit or at least does not hurt. And for the
two-step training, the basic one-dimensional dist 1 works better than high dimensional concatenation
or comb_dmn. Moreover, concatenation always works better than comb_dmn for two-step training, but
when training only on MCL-WiC comb_dmn gives higher test-wordSpear.

WiC model training. Figure 2 compares different training schemes. All compared models employ
the mean subword pooling, the concatenation of target word embeddings and dev2-sentSpear for early
stopping. Training schemes are specified in the following format.
* In the case of one-step training: training dataset” (loss function of the training).
* In the case of two-step training: training dataset #1” -> “training dataset #2” (loss function of the
second training). The loss function of the first step is CE by default.

Evidently, two-step training procedure employing both the large multilingual MCL-WiC dataset and
the task-specific RuSemShift dataset significantly boosts the performance compared to single-step train-
ing on any of the datasets alone. Using the combination of RuSemShift and the part of MCL-WiC in
Russian with the proposed MSE+ loss for the second training step generally gives the best overall per-
formance, except for the dev-wordSpear, which is a little better for another scheme presumably due to
the metric variance. Using RuSemShift on the second training step shows much better performance than
employing the Russian part of MCL-WiC for the same purpose. For the single-step training schemes, we
observe a large difference between dev and test performance for model trained on only English or Russian
parts of MCL-WiC. The model trained on RuSemShift with MSE loss ranks sentences much worse than
the one trained on MCL-WiC, but their results of the final word ranking are comparable. Surprisingly,
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dataset = dev_avg | metric = wordSpear dataset = dev_avg | metric = sentSpear

MCL-WiC->rusemshift(CE)

MCL-WiC->rusemshift(MSE)
MCL-WiC->rusemshift-ruMCL-WiC(CE)

MCL-WiC->rusemshift-ruMCL-WiC(MSE+)

MCL-WiC->MCL-WiC_ru-ru(CE)

train->finetune

rusemshift(MSE)
MCL-WiC(CE)
MCL-WiC_train-en-en(CE)
MCL-WiC_ru-ru(CE)
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Figure 2: Comparison of the WiC model training. Aggregation of the target word embeddings is
concatenation.

one can train the model on the English part of MCL-WiC only and still obtain a relatively good LSCD
results comparable to the 3rd best team in the competition. This shows strong zero-shot cross-lingual
transfer capabilities of the underlying XLM-R model. Training on the Russian part of MCL-WiC alone
gives mixed results presumably due to much smaller size of this part.

4.3 WiC scores aggregation for word scoring

Figure 3 shows the comparison of different methods of obtaining word scores from sentence pairs scores.
The quality does not depend on the method of word scoring as much, as on the WiC model architecture
or training scheme, but the linear regression gives consistently the best or nearly the best results.
Finally, we estimated how the quality of the final word ranking depends on the number of sentence pairs
sampled for each word. We sampled each number of sentence pairs 30 times and calculated the mean and
the standard deviation of the target wordSpear metric. Figure 4 shows the results for test words. As we
expected, the target metric improves rapidly with the number of sampled sentences, and also its standard
deviation decreases. Even for 80 samples std is 0.8 point, suggesting that different sampled pairs result in
2-3 point difference in the target metrics. This figure also suggests that if only several dozen of sentence
pairs were annotated for each word during the construction of a LSCD dataset, the difference between
methods of 5-10 points may be due to chance. The green dashed line shows the results when we run our
system on the same sentence pairs that were annotated by humans. Unsurprisingly, this results in better
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estimate of the gold word scores. However, the difference becomes small as the number of sampled pairs
approaches one hundred.

test = pl2 test = p23 test = p13

IsoReg LinReg Mean LinReg_s IsoReg LinReg Mean LinReg_s IsoReg LinReg Mean LinReg_s
method method method

0.84

wordSpear
o o
o] [os]
o N

o
~
©

0.7

[«)]

Figure 3: Word scoring methods. Results for the predictions on the sampled test pairs. Model:
dist_I1ndotn-hs0 on MCL =% —RSS+ruMCL oy »" 5P

test = pl2 test = p23 test = pl13
WiC on gold sentence airs
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0.80
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o
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o070
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0.65
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Figure 4: Dependence on the number of sampled pairs. Error bars show one standard deviation. Model:
mean+dist_l1ndotn-hsO on MCL 7~ —>RSS+ruMCL‘1i\%25 je"tSpe‘““

5 Error analysis

This section is devoted to getting some insights into the types of errors, their relative frequencies
and reasons. We used the test set consisting of 99 unique target words and sentence pairs for
them with human annotations, which was provided by the organizers after the competition. We em-
ployed the WiC model with first subword pooling and concatenation of target embeddings trained on
MCLZ G~ —>RSS+1'uMCLdeU1 sentSpear \ith mean word scoring. This model achieved one of the
best results among our subm1ss10ns.

We define A Rank as the difference between the rank of a word predicted by our model and the gold
rank. Words with a high |A Rank| value are considered serious errors, we decided to focus on the words
with |ARank| > 25. This resulted in 24 words from p/2, 18 words from p23, and 13 words from p/3.
Many of those words are incorrectly ranked in several pairs of time periods, thus, there are 27 unique
words that we analyzed in total. They are shown in Figure 5.

5.1 Classification of WiC model mistakes

To understand the reasons of incorrect ranking of words under consideration, for each of them we have
selected 5-7 annotated sentence pairs with the highest difference between gold annotations and the pre-
dicted WiC scores (the difference was 1.5 at least). We obtained 171 pairs of sentences in total, and
annotated them according to the error types described below.
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Figure 5: Words with large difference between the predicted and the gold ranks at least for one pair of
epochs.

Table 3 shows the results of error analysis and examples. More examples can be found in appendix C.
We identified four typical reasons (error types) of the high disagreement between WiC model predictions
and human annotations.
1. Model can not find the difference. The model incorrectly classifies two word occurrences as having
the same meaning.

2. Model sees wrong difference. The model incorrectly classifies two word occurrences as having
different meanings.

3. Model seems to be right. These are pairs of sentences, that in our opinion were correctly classified
by the model, but incorrectly annotated by one or more annotators.

4. Ambiguity. From the context we could not understand whether two word occurrences have the same
meaning.

The most frequent error type (39% of all analyzed examples) is Model can not find the difference.
This strongly effects the final ranking of words like mauxa (car / cart), ysorvnenue (dismissal / vaca-
tion), 0s0bka (servant tutor / uncle / mister) that obtained or lost the first sense, which the model cannot
distinguish from others.

Error types Model seems to be right and Model sees wrong difference have almost equal frequency
(23.2% and 22.8%). In the sentences of the first type, the target word usually has two senses that are sim-
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Table 3: Types of errors, their proportions and examples.

Type Gold Model Pair of sentences
Model cannot | 111 4 IMazynbckuid 6611 mpuroBopeH B Opecce k 12 romam, 100 mimersiM M TpeMm romam
find the MIPUKOBAHUS K TA4YKe.
difference. Omnu ¢ Bepoil BeIopXHyiu U3 ABepeil TAYKHU U HOIUIBIIM B HEBECOMOCTH CIIOPTUBHOIO
39% 3ana.
Model seems to | 133 1 ”Ecnu roMeonarsl He 00XonsTcsi 0e3 IPUBUBOK, TO YETO XK€ HaM CTECHAThCs!” — Tak
be right. yTEIIaloT ce0s1 MAHbAKH NPUBUBOK ...
23.2% Tonbko IpeciieoBaHUi MAHbSIKA MHE B TAKOM COCTOSHHM HE XBaTaJlo
Model sees 444 1 Ha pykax ona c¢ ycunueM tamuna denbky, IpukaB ero NONEPEeK KUBOTA, YEM OH
wrong HUCKOJIBKO HE CMYIIIAICS.
difference. Bonu B :xuBOTE HE TO CTaNU cnabee, He TO OH K HUM IIPUBBIK
22.8%
Ambiguity. 143 4 IIpuseis 1902 roma B 1924 romy nman Kpachoit apmuum 4.700 napruiiues; npu
15% YBOJILHEHHMH JK€ 3TOro Bo3pacTa B 1926 rongy B 3amac Kpachas apmus nama crpaHe
19.439 napruiiues.
YBOJIbHeHHe IIPOU3BOIUTCS B MOPSIKE OUSPEIHOCTH.

ilar to some degree. Often there is disagreement between annotators in such cases. Since there were only
three annotators, even one incorrect annotation significantly effected the resulting mean human score for
a sentence pair. For instance, Table 3 contains sentences for the word manssax (maniac), which has a dir-
ect meaning (a mentally ill man) and a figurative meaning (a person obsessed with a passionate attraction
to something). The model correctly distinguished these senses, but two out of three annotators decided
that those senses are very similar. For sentence pairs of the type Ambiguity there is large disagreement
between annotators, hence, the aggregated gold annotation is almost random. For instance, in Table 3 the
word ysonwrenue (dismissal / vacation) in the second sentence can express any of its meanings.

This error analysis suggests that about 60% of the analyzed sentences are actually incorrect predictions,
while the rest are hard cases where human annotators disagree with each other. Such cases can be easily
found by high deviation between annotations, and it may be beneficial involving additional annotators to
resolve disagreement or to filter unclear examples.

Another technical issue we found were incorrectly tagged examples in the test set. The organizers of
the competition published the test set with annotated sentences. It consists of three files, each of them
contains approximately 3000 pairs of sentences containing some target word highlighted by special tags
<b><i>, </i></b>. However, in a significant proportion of sentences (Table 4) the target word was not
tagged, which was a problem for our WiC model. Finally, we fixed the largest part of incorrect examples,
the rest consisted of sentences with abbreviated target words, for example: anocmon — an.,eex — 6.
Our fixes are merged into the published version of the dataset, hopefully, making the dataset better.

Table 4: Incorrectly tagged examples.

Test set | Total examples | Bad examples | Fixed examples
pl2 2965 236 214
p23 2967 221 191
pl3 2969 249 207

6 Conclusion

We have proposed an approach to Semantic Change Detection employing a Word-in-Context model and
found that it has strong performance achieving the 2nd best result among other competing approaches,
which can be further improved to outperform the 1st best result by improving WiC architecture and train-
ing procedure. Regarding the architecture, we have found that a simple linear head on top of concatenated
L1 distance and dot product between contextualized XLM-R embeddings provides better performance
than more common alternatives like embedding concatenation and non-linear classification heads. For

11
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the training procedure, using training on a large multilingual WiC dataset first and fine-tuning on a task-
specific RuSemShift data later results in the best overall performance.

We performed a detailed error analysis of sentences, where disagreement between model and annotators
was the highest. To understand why the model fails, we annotated 171 pairs of sentences and revealed
four different types of low model results. Such mistakes included examples when the model correctly
distinguished the difference or similarity of senses, when annotators were wrong, and vice versa.
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A Comparison with human quality

It is interesting to compare the performance of our best model with human performance. There are three
columns containing annotations of each sentence pair by different annotators in RuShiftEval [5] and
five columns in RuSemsShift [9]. To estimate human performance, we excluded examples with one or
more annotations absent or having zero (undecided) values. For examples with full set of annotations
we calculated wordSpear and sentSpear between each column and the mean of other columns (annotN
VS mean_wo_N). However, this method of human performance estimation shall be taken with a grain
of salt. It is totally correct only if each human annotated the whole dataset, which may not be true for
RuSemShift and RuShiftEval datasets that were annotated using crowdsourcing. We suppose, that each
of three or five annotators specified in the datasets really correspond to several humans. In this case we
are probably overestimating human performance of word ranking (wordSpear), because after averaging
across all sentence pairs individual misconceptions about senses of a particular word resulting in incor-
rect annotations of some sentence pairs with this word by one human will be partially compensated by
annotations of other sentence pairs with the same word obtained from other humans. To get better estim-
ates of human performance for datasets annotated with crowdsourcing, additional identifiers of humans
who annotated each example are required, which are not available for these two datasets. However, we
still believe that our estimates may be useful to some degree, even if they are just an upper bound. For
comparison in table 7 we provide estimates of human performance obtained by the same procedure for
the DURel [11] LSCD dataset in German, which has a structure similar to RuShiftEval and RuSemShift.
This dataset was fully annotated by each of five annotators, thus, our procedure shall estimate human
performance correctly for DURel.

wordSpear sentSpear
method devl | dev2 | devl | dev2
annotl VS mean wo 1 0.941 | 0.964 | 0.516 | 0.587
annot2 VS mean_wo 2 0.940 | 0.940 | 0.527 | 0.545
annot3 VS mean_wo 3 0.943 | 0.951 | 0.547 | 0.545
annot4 VS mean wo 4 0.939 | 0.941 | 0.545 | 0.558
annot5 VS mean_wo 5 0.961 | 0.923 | 0.524 | 0.566

| mean+dist_IIndotn-hs0 on MCLZ G~ — RS} o *""P**" | 0.819 | 0.811 [ 0.599 | 0.657 |

Table 5: Comparison of our best model with human quality on RuSemShift development set.

wordSpear sentSpear
method p12 p23 p13 p12 P23 p13
annotl VS mean_wo 1 0.932 | 0.953 | 0.959 | 0.579 | 0.621 | 0.628
annot2 VS mean_wo 2 0.920 | 0.957 | 0.948 | 0.578 | 0.616 | 0.605
annot3 VS mean_wo 3 0.936 | 0.958 | 0.959 | 0.597 | 0.626 | 0.616

mean+dist_IIndotn-hs0 on MCLZ S~ — RSy uy *"***" | 0.825 | 0.821 | 0.823 | 0.596 | 0.634 | 0.631 |

Table 6: Comparison of our best model with human quality on RuShiftEval.

method wordSpear | sentSpear
annotl VS mean wo 1 0.875 0.670
annot2 VS mean_wo 2 0.883 0.698
annot3 VS mean_wo 3 0.883 0.678
annot4 VS mean_wo 4 0.939 0.745
annot5 VS mean_wo 5 0.943 0.717

Table 7: Human quality on DURel.
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Tables 5 and 6 show that our best model performs ranking of sentence pairs similarly or better than
humans. However, word ranking results are significantly worse than those of humans. We suppose that
such discrepancy may be due to different biases in mistakes made by humans and our model while scoring
sentence pairs. Probably, humans underestimate and overestimate similarity between word occurrences
with similar probabilities, so their mistakes are less biased and cancel each other when the average of
scores for sentence pairs is calculated to produce word scores. In contrast, as we observed from the
error analysis our model in principal does not see differences between some senses. Thus, it consistently
overestimates similarity between occurrences of those senses and averaging does not help.

Comparing our estimates of human performance for the Russian datasets and DURel, we observe that
humans have better agreement in ranking of sentence pairs (sentSpear) on DURel, especially annotat-
ors 4 and 5, who were student with a background in historical linguistics. However, our estimates of
human performance for word ranking (wordSpear) on the Russian datasets is similar or higher than the
performance of those two best annotators of DURel. This inderectly supports our hypothesis about over-
estimation of human performance on the Russian datasets. However, more information about annotators
from the crowdsourcing platform is required to draw reliable conclusions.

B Removing short and long sentences

C
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Figure 6: Dependency on percent of removed short and long sentences. Model: first+concat on
— dev2—sentSpear
MCLE, “““ =RSS), 65

During the competition for each target word we removed 25% of the longest sentences and 25% of the
shortest sentences before sampling examples for this word. This was based on our intuition that the WiC
model can perform worse on very short or long examples, while thresholds were set arbitrarily. After the
competition we decided to study whether removing only shortest or only longest examples is better, and
also selecting better threshold. Figure 6 shows the dependence of the competition metric (wordSpear on
RuShiftEval averaged over three pairs of time periods) on the percent of longest or shortest sentences
removed. For symmetric removal the specified percent is removed from each side, resulting in two times
more sentences removed. Surprisingly, we observe that removing only shortest or only longest sentences
for each word help little. Removing both shortest and longest sentences consistently improve results.
The best results are obtained when 40% of the shortest and 40% of the longest sentences are removed for
each word, and examples are sampled from only 20% of sentences of medium length.

C More examples of mistakes
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Table 8: Samples for mistakes Model seems to be right and Model can not find the difference

Type

Gold

Model

Pairs of sentences

Model seems to
be right.
23.2%

143
122
234

1
4
1

1) OH, KaK BHIHO M3 €r0 CTHXOTBOPEHHH, B3SUICS 32 JIEJIO M09TA MO MPH3BAHHIO; OH
CHJIBHO COYYBCTBYET BOIPOCAM CBOEr0 BPEMEHH, CTpaJaeT BCeMH HeIyraMu BeKa,
GOJIE3HEHHO MYYHTCSI HECOBEPIIEHCTBAMH OOIIECTBA W CTOPAET HETIIETHO HKAKIOHO
CIIOCTICIIIECTBOBATH €T0 COBEPIICHCTBOBAHHIO M TOPXKECTBY Ha 3eMJIe HCTHUHBI, II0OBH
Oparctsa.

Bo BTOpO#i MOMOBHHE MPOILIOrO BeKa PHIThe KOJIOALEB OBUIO 3aMEHEHO OypeHHeM
CKBQKVH.

2) VHsTh ObLIO HEBO3MOXKHO, 110 KpaifHell Mepe B Ty MUHYTY, M — BAPYT OKOHYATEIbHAS
karactpoda kak 6omMOa pa3pasuiach HaJ COOpaHHEM WM TPECHYJA CPEIH €ro: TPeTHil
YTel, TOT MaHbSIK, KOTOPHI BCE Maxaj KylakoM 3a KyJIHCaMH, BAPYT BBIOSKaN Ha
CIICHY.

He Hano 6bu10 OBITH OaETHBIM MaHBAKOM, YTOOBI IOHSATH, YTO OAJIEpHHOI 3Ta 0coda
HHKOTIa HE Oy/IeT.

3) Dt0 xepTBa HE MO, @ BCETO YKJIaa )KU3HN!

Tam, BepHO, PYKOMOWHHKH B CEHAX, NMAXHET KYXHEH, MOKpPBIE IPOBa BO3JE IEYEK —
yOoruii, HeMFOONMBII MHOIO, TaUHbIH 3UMHUH YKJIA/.

Model can not
find the
difference.
39%

—_—
i QUG G QU
W = = = N

N R

1) Cxopo npubsut K HeMy OpaTbhsi ero, AHapeld U bopuc, ¢ UX MHOTOYHCICHHOIO
JPYXKHHOIO: He OBUIO HM YIpPEKOB, HM W3BHHEHUH, HU YCIOBUH; €AMHOKPOBHBIC
OOHsIMCA ¢ BUAOM HCKpPEHHEH JI0OBH, YTOOBI BMECTE CIYXHUTh OTEUECTBY H
XPHUCTHAHCTBY.

O roBopwuu eit: Te1, Opat”.

2) 310M0ITyYHEIH HepPOMOHAX OB BEITAIIEH U3 OTHS CO CIa0BIMU NPU3HAKAMH JKU3HH.
Houbto HeMIIbl 0OpYIININ Ha HALlEe PACHIONIOKEHHE MACCUPOBAHHBIN apTUIIEPUICKIN
OTOHb.

3) B ronoBimuHy cBaib0b! Oyay BEICTABIATH Ha OANKOHE OTHEHHBIE M (PbI.

Cepreit I'ma3sseB ¢ muppaMu B pykax HamISIHO JIOKa3al, YTO HAET XUIHHYECKas
n00bI9a HeTH U rasa, NIaBHAs IeTb KOTOPOH — CBEPXIPUOBLIB JF000H [EHOH.

4) Baguma IlerpoBuda HaunHaI0 Opath pasapakeHHe U Ha OBIBIIETO CBOETO ASIABKY.
— Yro 3a spmapka — Tax lenp HazamaxHocTH! — OTBeyaeT AsiAbKA B HAIMOHAIEHOM
T'YIYJIBCKOM KOCTIOME, C IPUKJICEHHBIMH YCaMH.

5) Komanpa, 3a HCKIIIOYEHHEM BaxXTEHHBIX, YIIIA B YBOJIbHEHHE, B TOPO/I.

[MepBBIM MIOXMM HNPH3HAKOM CTall 3aMyIIEHHBIH B IIPeccy CIyX, 4TO Cpa3y e Iocie
yBoibHeHusi [lpumakoBa Pamora cam momam B OTCTaBKy, a Ha €ro MECTO yxke
nonOMpaeTcs HOBasl KAaHAUIATYpA.

Table 9: Samples of mistakes Model sees wrong difference and Ambiguity

Type

Gold

Model

Pairs of sentences

Model sees
wrong

difference.
22.8%

744
444
434

1
1
1

1) Ty B kapMaHe ThIcsiua pyOJIeB MOJIOXKEHa.

BMmecTo nTHIl OH DPUHOCUI JOMOM Iielble KApMaHbl KaMHEH U CBaaMBal MX IOJ
HaBECOM B SIIHUK.

2) Korna x BenmyecTBa HOBEpHYIH K TOH CTOPOHE CTE€HBI, KOTOpast BeieT K CrlacCKuM
BOPOTaM, Ha IUIONIQJM Y)KE CTOsUIa THICSYHAs TONIA, NMpHBeTCTBOBaBIIas Llaps u
Lapuity BocTOp»KEHHBIMA KITHMKAaMH ypa” U OpOCaHBEM B BO3AYX MIAIIOK.

B KoHIIE 3TOr0 ABOpa y CTEHBI IIOCTABICHBI OOYKH, HA KOTOPBIE HAJIOXKEHBI JOCKH.

3) Omnaxns! [letp 3actan chiHa B capae, MaJbYHK HBITANICS MPUCTPOUTH K CTApOMY
KOPBITY KOJIECO TAYKH.

Tans u OcBanb] HE PEMIANNCH CONTH C TPOIEI, YTOOBI HE HACTYNHTh HA 3MEIO0, HE
HOTPEBOXKUTH Ib(a ¢ KPOLICYHOI TAYKOM, HE MOTHATH U3 JIOTOBA CKa304HOTO BOJIKA.

Ambiguity.
15%

434
414
231

—_

1) Urak, 4ToOBl OKOHYUTH C 3TUM IpeAMeToM, Hpoiry Bac, apyr Mo, HuKOrza He
OIacaThCs 3a1€Th MOIO aBTOPCKYI0 aMOHMIIHIO.

PasroBop, xoHe4HO, GecCMBICICHHBIH 1 OecoNe3Hblld, HO HaBEAIIUH BCce Ha Te ke
pasmeiuienus: o Llepksu, o IIpaBocnaBuy, o TOH MeJIOYHOH U Jaxe 37T00HOH Karme
UHTPUT, CaMOJIIOOMH, aMOMIMIA, STOLEHTPU3MOB, B KOTOpOil mpuxonutcs B LlepkBu
XKUTB.

2) Pebsra, ¢ Taukamu Tynal..

CKOTHHK, HACKBO3b HAITUTAHHBII 3aI1aXOM HaBO3HOM JKIDKH, TOT CaMbIH, 4TO HE JIOBE3
CBOEH TAYKM, a MOINIEN CMEATHCA C MYyXHKaMHM, KOTAA MYXXHMKH elle JOOpOMYIIHO
TIOKYPHBAJIN Ha KPHUIbIAX JIFOICKOM — BepTeN B pyKax TEPPaKOTOBYIO KOMHIO XUMEPHI:
— Banbka, misiau-ka!

3) IToneMHOTy MBI IPUBBIKAIH K CBOEMY JIOMUKY U CBOEMY HOBOMY YKJIaTy.

B crpanmax EBpombl Bcerma NpPOUCXOAHWIO COMPUKOCHOBEHHE, a HEPEOKO U
NPOTUBOOOPCTBO, € MECTHOHW Tpajuuued, Kyna BXOMWIM U ICTETHYECKHE
MPE/ICTABIICHNUS 3aKa3UHKOB, U OBITOBOH YKJIa/l, ¥ MECTHBIE PEMECIICHHbIE KOPIOPAIHH.
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